• Title/Summary/Keyword: Paste Electrode

Search Result 255, Processing Time 0.025 seconds

Production and Operating Characteristics for Inorganic EL Phosphor (무기EL용 형광체 제작 및 구동특성)

  • Chansri, Pakpoom;Lee, Don-Kyu;Gwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1132-1133
    • /
    • 2015
  • In this paper, we are presents production and operation characteristics for inorganic EL phosphors device using screen printed. The EL device is composed as ITO PET / EL phosphors dielectric $(2{\times}2cm^2)/TiO^2$ paste/Ag electrode. At 100Vac 400Hz, the luminescence of inorganic EL phosphors were $60.33cd/m^2$ of red phosphor, $42.12cd/m^2$ of green phosphor and $58.45cd/m^2$ of blue phosphor. The output current was 12.57 mA, 17.11 mA and 11.98 mA, respectively. The inorganic EL phosphors of EL device are increasing efficiency EL device.

  • PDF

Electrochemical Assay of Neurotransmitter Glycine in Brain Cells

  • Ly, Suw-Young;Kim, Dong-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.515-519
    • /
    • 2007
  • Neurotransmitter glycine in the nano gram range was analyzed using a paste electrode (PE) in cyclic voltammetry (CV) and square-wave stripping voltammetry (SWSV). An anodic peak caused by oxidation of the glycine ion appeared at the 0.4 V (versus Ag/AgCl/KCl) potential in a 0.1 M NH4H2PO4 electrolyte solution. At optimized conditions, the working range of the SWSV and CV concentration was found to be 5-60 ngL-1 glycine; precision of R2 = 0.9816 (SWSV) and 0.9986 (CV); and detection limit of 0.65 ngL-1 (5.82 × 10-12 molL-1) (S/N = 3). The optimized conditions were applied to an assay in a fish brain tissue and a living brain cell in real time.

Antibiotics Assay of Doxycycline in Food System using Stripping Voltammetry

  • Ly, Suw Young;Lee, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.726-733
    • /
    • 2016
  • A voltammetric analysis of doxycycline was developed using DNA immobilized onto a carbon nanotube paste electrode (PE). An anodic peak current was indicated at 0.2 V (versus Ag/AgCl) in a 0.1M $NH_4H_2PO_4$ electrolyte solution. The linear working range of the cyclic and square wave stripping voltammetry was obtained to $1-27ngL^{-1}$ with an accumulation time of 800 s. Final analytical parameters were optimized to be as follows: amplitude, 0.35 V; frequency, 500 Hz; and pH, 5.43. Here detection limit was found to be $0.45ngL^{-1}$, this result can be applied in foods systems and in the biological diagnostics

Potentiometric sensor of graphene oxide decorated with silver nanoparticles/molecularly imprinted polymer for determination of gabapentin

  • Abdallah, Nehad A.;Ibrahim, Heba F.
    • Carbon letters
    • /
    • v.27
    • /
    • pp.50-63
    • /
    • 2018
  • An imprinted potentiometric sensor was developed for direct and selective determination of gabapentin. Sensor is based on carbon paste electrode adapted by graphene oxide that is decorated with silver nanoparticles and mixed with molecularly imprinted polymers nanoparticles using gabapentin as a template molecule. The synthesized nanoparticles were characterized by Fourier transmission infrared spectroscopy, transmission electron microscopy and X-ray diffraction. Under optimal experimental conditions, the studied sensor exhibited high selectivity and sensitivity with LOD of $4.8{\times}10^{-11}mol\;L^{-1}$. It provided a wide linearity range from $1{\times}10^{-10}$ to $1{\times}10^{-3}mol\;L^{-1}$ and high stability for more than 3 mo. The sensor was effectively used for the determination of gabapentin in pharmaceutical tablets and spiked plasma samples.

A Study on the Element Technology for PV Module Manufacturing (태양전지모듈 제조를 위한 요소기술연구)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Park, Kyung-Un;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1365-1367
    • /
    • 2003
  • In this paper, element technologies such as soldering. arrangement and lamination processes for photovoltaic module manufacture were examined and described as main processes. Especially solder paste and temperature condition in soldering process, loss factor in arrangement process and process conditions in lamination process are investigated to minimize the electrical loss. As a results, temperature condition in soldering process was found to be critical to contact resistance of electrode and life-time. Productivity of the process decreases dramatically by physical damage during arrangement process. Pressure level and press condition of upper chamber in lamination process were important parameters for the reliability. According to the test result of photovoltaic module, electrical properties dropped about $5{\sim}25%$ after 5 years.

  • PDF

Thermal Behaviors of Ag Conductive Thick Film with Firing Temperature for Plasma Display Panel (PDP용 Ag 전도성 후막의 열적거동)

  • Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.278-278
    • /
    • 2007
  • Ag conductive thick film has been used in bus and address electrodes of PDP (Plasma display panel). In PDP fabrication, the firing temperature of electrode is normally $550{\sim}580^{\circ}C$. For the application of PDP industry, we investigated an Ag conductive thick film with firing temperature. Low melting glass frit was used in the conductive thick film. The thermal properties of Ag and frit were determined by a hot stage microscopy. Based on the our results, we suggest that the Ag conductive thick film should be considered of the firing temperature which is correlated to the shrinkage, conductivity, and shape of thick film.

  • PDF

Screen Printing Method on Crystalline Silicon Solar Cells : A Review (결정질 실리콘 태양전지에 적용될 스크린 프린팅 기술 개발 동향 : 리뷰)

  • Jeon, Young Woo;Jang, Min Kyu;Kim, Min Je;Yi, Jun Sin;Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.90-94
    • /
    • 2022
  • The screen-printing method is the most mature solar cell fabrication technology, which has the advantage of being faster and simpler process than other printing technology. A front metallization printed through screen printing influences the efficiency and manufacturing cost of solar cell. Recent technology development of crystalline silicon solar cell is proceeding to reduce the manufacturing cost while improving the efficiency. Therefore, screen printing requires process development to reduce a line width of an electrode and decrease shading area. In this paper, we will discuss the development trend and prospects of screen-printing metallization using metal paste, which is currently used in manufacturing commercial crystalline silicon solar cells.

The Reliability Evaluation about the Triode-Type CNT Emission Source (삼극형 CNT 전자원에 대한 신뢰성 평가)

  • Kang, J.T.;Kim, D.J.;Jeong, J.W.;Kim, D.I.;Kim, J.S.;Lee, H.R.;Song, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • The electron emission source of triode type has been fabricated using CNT paste. The nano Ag particle and photosensitive polymers were added to the CNT paste. The surface roughness of the CNT emitter was uniform by the back exposure method. The added nano Ag particle improves the adhesion and the electric conductance with small variation in the CNTs and between electrode. After the aging with heat-exhausting, the reliability of the triode CNT electron source was secured in the high voltage and current operation for 12 hours. At this time, the gate leakage current was about 10 % less than.

Comparison of Contact Resistivity Measurements of Silver Paste for a Silicon Solar Cell Using TLM and CTLM (TLM 및 CTLM을 이용한 실리콘 태양전지 전면전극소재의 접촉 비저항 측정 비교연구)

  • Shin, Dong-Youn;Kim, Yu-Ri
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.539-545
    • /
    • 2014
  • Contact resistivity between silver electrodes and the emitter layer of a silicon solar cell wafer has been measured using either the circular transmission line method or the linear transmission line method. The circular transmission line method has an advantage over the linear transmission line method, in that it does not require an additional process for mesa etching to eliminate the leakage current. In contrast, the linear transmission line method has the advantage that its specimen can be acquired directly from a silicon solar cell. In this study, measured resistance data for the calculation of contact resistivity is compared for these two methods, and the mechanism by which the linear transmission line method can more realistically reflect the impact of the width and thickness of a silver electrode on contact resistivity is investigated.

Efficiency Variation of Dye-Sensitized Solar Cell Influenced by Phosphor Additives (형광체 첨가에 따른 염료감응형 태양전지의 효율 변화)

  • Jung, Sung-Hoon;Hwang, Kyung-Jun;Kang, Sung-Won;Jeong, Hyung-Gon;Kim, Sun-Il;Lee, Jae-Wook
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.227-233
    • /
    • 2009
  • Recently, dye-sensitized solar cell (DSSC), one of the solar cells, has been widely investigated. Studies on DSSCs can be classified into 4 fields such as $TiO_2$ nanocrystalline materials, dyes, electrolytes and conductive plate. In this work, $TiO_2$ nanoparticles for dye adsorption were synthesized, and added into the photo-electrode paste with different phosphor types and contents. Then, the influence of phosphor additives on the conversion efficiency of DSSCs was investigated. It was found that the maximum conversion efficiency was 8.81% when 0.5% of YAG phospher having the particle size of 400 nm was used.