Browse > Article
http://dx.doi.org/10.12925/jkocs.2016.33.4.726

Antibiotics Assay of Doxycycline in Food System using Stripping Voltammetry  

Ly, Suw Young (Biosensor Research Institute, Seoul National University of Technology)
Lee, Chang Hyun (Department of Integrated Enviromental Systems, Pyeongtaek University)
Publication Information
Journal of the Korean Applied Science and Technology / v.33, no.4, 2016 , pp. 726-733 More about this Journal
Abstract
A voltammetric analysis of doxycycline was developed using DNA immobilized onto a carbon nanotube paste electrode (PE). An anodic peak current was indicated at 0.2 V (versus Ag/AgCl) in a 0.1M $NH_4H_2PO_4$ electrolyte solution. The linear working range of the cyclic and square wave stripping voltammetry was obtained to $1-27ngL^{-1}$ with an accumulation time of 800 s. Final analytical parameters were optimized to be as follows: amplitude, 0.35 V; frequency, 500 Hz; and pH, 5.43. Here detection limit was found to be $0.45ngL^{-1}$, this result can be applied in foods systems and in the biological diagnostics
Keywords
Voltammetry; DNA; Carbon nanotube; Doxycycline; assay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shinwoo, Y., & Kenneth, C., (2004) Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique, Water Res 3, 3155-3166.
2 Papadoyannis, I.N., Samanidou, V.F., & Kovatsi, L.A., (2000) A rapid high performance liquid chromatographic (HPLC) assay for the determination of oxytetracycline in commercial pharmaceuticals, J Pharmaceut Biomed 23, 275-280.   DOI
3 Hans, S., Flemming, I., Richard, A., Bent, H. S., JimK, B., Christian, J. W., David, J. J., & Keith, R. S., (2005) Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC.UV and LC/MS/MS under aquatic semi-.eld microcosm conditions, Chemosphere 60, 619-629.   DOI
4 Nozal, L., Arce, L., Simonet, B.M., Rios, A., & Valcarcel, M., (2004) Rapid determination of trace levels of tetracyclines in surface water using a continuous flow manifold coupled to a capillary electrophoresis system, Anal Chim Acta 517, 89-94.   DOI
5 Marzanna, K., & Agnieszka, K. M., (2004) Electrochemical determination of oxytetracycline in veterinary drugs, J Pharmaceut Biome 34, 95-102.   DOI
6 Fernandez, G. R, Garcia, F. M. S., & Simal, G. J., (2000) Quantitative analysis for oxytetracycline in medicated premixes and feeds by second-derivative synchronous spectrofluorimetry, Anal Chim Acta 455. 143-148.
7 Anne, K. L., Bent, H. S., Claus, C., Jette, T., & Steen, H. H., (2004) Quantitative analysis of oxytetracycline and its impurities by LC-MS-MS, J Pharm Biomed 34, 325-332.   DOI
8 Zhu, J., Snow, D.D., Cassada, D.A., Monson, S.J., & Spalding, R.F. (2001) Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography- tandem mass spectrometry, J ChromatogrA, 928. 177-186.   DOI
9 Xian, X. S., Xu, Z., Hassan, Y.,& Aboul, E., (2004) Construction and characterization of potentiometric sensor for the determination of oxytetracycline hydrochloride, IL FARMACO 59, 307-314.   DOI
10 Wangfuengkanagul, N., Siangproh, W., & Chailapakul, O., (2004) A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode, Talanta 64, 1183-1188.   DOI
11 Marzanna, K., & Agnieszka, K. M., (2004) Electrochemical determination of oxytetracycline inveterinary drugs, J Pharmaceut Biome 34, 95-102.   DOI
12 Hisao, O., Yuko, I., & Hiroshi, M., (2000) Chromatographic analysis of tetracycline antibiotics in foods, J Chromat A, 882, 109-133.   DOI
13 Marc, C., Mario, S,, Siska, C., & Patrick, D. B., (2003) Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry, Anal Chim Acta 492, 199-213.   DOI
14 Hisao, O., Yuko, I., & Hiroshi, M., (2000) Chromatographic analysis of tetracycline antibiotics in foods, J Chromat A, 882, 109-133.   DOI
15 Eva, R. S., Tjasa, P., Vera, M., & Franc, S., (2005) Susceptibility of Borrelia afzelii strains to antimicrobial agents, In J Antimicrob Ag 25, 474-478.   DOI
16 Paul, A. B., Hans, C. H. L., Hai, P. M., Bent, H. S., Alistair, B. A. B., Paul, K., (2004) Fast and robust simultaneous determination of three veterinary antibiotics in ground water and surface water using a tandem solid-phase extraction with high-performance liquid chromatography-UV detection, J Chromatogr A, 1045, 111-117.   DOI
17 Pilar, V., Nuria, B., & Carmen, L. E., (2004) Manuel Hernandez-Cordoba, Liquid chromatography with ultraviolet absorbance detection for the analysis of tetracycline.
18 Anne, M. J., Bent, H. S., Flemming, I., & Steen, H. H., (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry, J Chromat A, 1038, 157-170.   DOI
19 Xiaojing, D., & Shifen, M., (2000) Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent, J Chromatogr A, 89, 205-214.
20 Rosie, C., Oivind, B., & Ole, B. S., (2004) Short communication One step liquid chromatographic method for the determination of oxytetracycline in fish muscle, J Chromatogr B, 810, 325-328.   DOI
21 Yuan, D. Z., Dai, W. P., Shen, Hu., Zong, L. W., Jie, K. C., & Hong, P. D., (1999) DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers, Talanta 49, 751-756.   DOI
22 Nagwa, A. E., (2004) Voltammetric analysis of drugs, Bioelectrochemistry 64, 99-107.   DOI
23 Adriano, A., Riccarda, A., Luigi, C., Roberto, D., & Irma, L. (2005) Electrochemical determination of pharmaceuticals in spiked water samples, J Hazard Mater 122, 219-225.   DOI
24 Manli, G., Jinhua, C., Dengyou, L., Lihua, N., & Shouzhuo, Y., (2004) Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes, Bioelectrochemistry 62, 29-35.   DOI
25 Ge, Z., Kuaizhi. L., Song. L., Ji. L., Xinyong. G., & Zhijun, Z. (2003) Application of a Carbon Nanotube Modified Electrode in Anodic Stripping Voltammetry for Determination of Trace Amounts of 6-Benzylaminopurine, Microchim. Acta 143, 255-260.   DOI
26 Gang, W., Jing, J.X., & Hong, Y. C. (2002) Interfacing cytochrome c to electrodes with a DNA