• Title/Summary/Keyword: Password-Based authentication protocol

Search Result 116, Processing Time 0.021 seconds

Multi-Server Authenticated Key Exchange Protocol (다중서버를 이용한 인증된 키교환 프로토콜)

  • 이정현;김현정;이동훈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.87-97
    • /
    • 2003
  • In this paper, we define two security concepts, “non-computable security” and “distribution security”, about authentication information committed to a authentication server without any trustee, and propose an authenticatied key exchange protocol based on password, satisfying “distribution security”. We call it MAP(Muti-Server Authentication Protocol based on Password) and show that SSSO(Secure Single Sign On) using MAP solves a problem of SSO(Single Sign On) using authentication protocol based on password with a trustee.

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.

Improved Secure Remote User Authentication Protocol

  • Lee, Ji-Seon;Park, Ji-Hye;Chang, Jik-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.931-938
    • /
    • 2009
  • Recently, Holbl et al. proposed an improvement to Peyravian-Jeffries's password-based authentication protocol to overcome some security flaws. However, Munilla et al. showed that Holbl et al.'s improvement is still vulnerable to off-line password guessing attack. In this paper, we provide a secure password-based authentication protocol which gets rid of the security flaws of Holbl et al.'s protocol.

EAP Using Split Password-based Authenticated Key Agreement Protocol for IEEE Std 802.1x User Authentication (IEEE Std 802.1x 사용자 인증을 위한 분할된 패스워드 인증 기반 EAP)

  • Ryu, Jong-Ho;Seo, Dong-Il;Youm, Heung-Youl
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.27-43
    • /
    • 2005
  • EAP provides authentication for each entity based on IEEE Std 802.1x Wireless lAN and RADIUS/DIAMETER protocol, and it uses certificate, dual scheme(e.g., password and token) with the authentication method. The password-based authentication scheme for authenticated key exchange is the most widely-used user authentication method due to various advantages, such as human-memorable simplicity, convenience, mobility, A specific hardware device is also unnecessary, This paper discusses user authentication via public networks and proposes the Split Password-based Authenticated Key Exchange (SPAKE), which is ideal for both authenticating users and exchanging session keys when using a subsequent secure communication over untrusted network, And then we provides EAP authentication framework EAP-SPAKE by using it.

  • PDF

Improved Strong Password Mutual Authentication Protocol to Secure on Replay Attack (재전송 공격에 안전한 개선된 강력한 패스워드 상호인증 프로토콜)

  • Kim, Jun-Sub;Kwak, Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.415-425
    • /
    • 2010
  • In public network, user authentication is important security technology. Especially, password-based authentication method is used the most widely in distributed environments, and there are many authentication methods. Their SPMA protocol indicates vulnerability about problem that NSPA protocol does not offer mutual authentication, and proposed Strong Password Mutual Authentication protocol with mutual authentication. However, SPMA protocol has vulnerability of replay attack. In the paper, we analyzed vulnerability to replay attack of SPMA protocol. And we also proposed Improved Strong Password Mutual Authentication protocol to secure on replay attack with same efficiency.

Password Authenticated Joux's Key Exchange Protocol (패스워드 인증된 Joux의 키 교환 프로토콜)

  • Lee Sang-gon;Hitcock Yvonne;Park Young-ho;Moon Sang-jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.73-92
    • /
    • 2005
  • Joux's tripartite key agreement protocol is one of the most prominent developments in the area of key agreement. Although certificate-based and ID-based authentication schemes have been proposed to provide authentication for Joux's protocol, no provably secure password-based one round tripartite key agreement protocol has been proposed yet. We propose a secure one round password-based tripartite key agreement protocol that builds on Joux's protocol and adapts PAK-EC scheme for password-based authentication, and present a proof of its security.

New Password based Remote User Authentication Protocols using Smartcards (스마트카드를 이용한 새로운 패스워드 기반의 원격 사용자 인증 프로토콜)

  • Jeon Il-Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • Recently, Ku and Chen(Ku-Chen) showed some problems in the password based remote user authentication scheme using smartcards proposed by Chien et al. and proposed an improvement from it. This paper shows some weaknesses in the Ku-Chen's scheme, especially the replay attacks, and proposes two authentication protocols to solve the problems in it. First of all, an authentication protocol using synchronized timestamps is proposed to solve the problem in the Ku-Chen's protocol. Then, a nonce-based authentication protocol is proposed to solve the inherent problems in the synchronized timestamp-based authentication protocols. The proposed authentication protocols support the advantages in the previous password-based authentication protocols and solve the problems in them effectively.

  • PDF

Design of Improved Strong Password Authentication Scheme to Secure on Replay Attack (재전송 공격에 안전한 개선된 강력한 패스워드 인증 프로토콜 설계)

  • Kim, Jun-Sub;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.133-140
    • /
    • 2011
  • Password-based authentication is the protocol that two entities share a password in advance and use the password as the basic of authentication. Password authentication schemes are divided into weak-password and strong-password authentication scheme. SPAS protocol, one of the strong-password authentication scheme, was proposed for secure against DoS attack. However it has vulnerability of the replay attack. In this paper, we analyze the vulnerability to the replay attack in SPAS protocol. Then we also propose an Improved-Strong Password Authentication Scheme (I-SPAS) with secure against the replay attack.

OTP-EKE: A Key Exchange Protocol based on One-Time-Password (OTP-EKE:원-타임-패스워드 기반의 키 고환 프로토콜)

  • Seo, Seung-Hyun;Cho, Tae-Nam;Lee, Sang-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.291-298
    • /
    • 2002
  • Mutual authentication is essential for key exchange protocols and password-based authentication scheme is used widely, which is convenient to users and executed on the cheap. Password-based protocol should be not only secure against attach but also efficient to reduce user's load. In this paper, we propose a new key exchange protocol, called OTP-EKE(One Time Password based Encrypted Key Exchange), to provide authentication and to share a session key between a server and a user. We choose a password-based scheme as a user authentication. Especially, we use a one-time-password verifier and server's public password to protect against attacks on server's directory. As for efficiency, we improve the performance by reducing the number of modular exponentiations and the number of rounds.

Password-Based Mutual Authentication Protocol Against Phishing Attacks (피싱 공격에 대응하기 위한 패스워드 기반의 상호 인증 프로토콜)

  • Kim, Iksu;Choi, Jongmyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • Until now, various studies on anti-phishing have been conducted. The most typical anti-phishing method is a method of collecting URL information of a phishing site in advance and then detecting phishing by comparing the URL of the visited site with the previously stored information. However, this blacklist-based anti-phishing method can not detect new phishing sites. For this reason, various anti-phishing authentication protocols have been proposed. but these protocols require a public key and a private key. In this paper, we propose a password-based mutual authentication protocol that is safe for phishing attacks. In the proposed protocol, the mutual authentication between the client and the server is performed through the authentication message including the password information. The proposed protocol is safe to eavesdropping attack because the authentication message uses the hash value of the password, not the original password, And it is safe to replay attack because different messages are used every time of authentication. In addition, since mutual authentication is performed, it is safe for man-in-the-middle attack. Finally, the proposed protocol does not require a key issuance process for authentication.