• Title/Summary/Keyword: Passivity based control

Search Result 48, Processing Time 0.02 seconds

A Cooperative Object-Transportation Control of Multiple AGV Systems using Decentralized Passive Velocity Field Control Algorithm (분산 수동속도장 제어법을 이용한 다중 AGV 시스템의 협조 이송제어)

  • Suh, Jin-Ho;Kim, Young-Bok;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.261-263
    • /
    • 2006
  • Automatic guided vehicle(AGV) in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control scheme based on virtual-passivity. It is shown that the cooperative AGV systems ensure stability and the convergence to scaled multiple of each desired velocity field for multiple AGV systems. Finally, the application of p reposed virtual passivity-based decentralized control algorithm via system augmentation is applied to be the tracking a circle. Also, the simulation results for the object-transportation by two AGV systems illustrate the validity of the proposed control scheme.

Robust Position Control of a Reaction Wheel Inverted Pendulum (원판의 반작용을 이용한 역진자의 강인 자세 제어)

  • Park, Sang-Hyung;Lee, Hae-Chang;Lim, Seong-Muk;Kim, Jung-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2016
  • This paper presents a robust control of a reaction wheel inverted pendulum. To this end, a mathematical model is derived using physical laws, and then parameters in the model are identified as well. Based on the model, a robust position control is designed, which consists of two parts: swing-up control using passivity and robust stabilization control using LMI (Linear Matrix Inequality). When the pendulum starts to move, the swing-up control is applied. If the position of the pendulum is near the desired upright position, the control is switched to the robust stabilization control. This robust control is employed in order to deal with the uncertainties in the inertia of the pendulum dynamics. The performance of the proposed control scheme is validated not only simulation but also real experiment.

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

Robust Controller Design for Non-square Linear Systems Using a Passivation Approach (수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.907-915
    • /
    • 2002
  • We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.

Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation (네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어)

  • Kim, Bong-Keun;Park, Hyun-Taek;Chung, Wan-Kyun;Suh, Il-Hong;Song, Joong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC (ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Lee, Min-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1203-1211
    • /
    • 2017
  • This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.

Robust Controllers for Large Space Structures Using an SPR Filter and Displacement Feedback (변위ㆍ정보와 SPR 필터를 이용한 대형 우주 구조물의 강인 제어기에 관한 연구)

  • 손영익;심형보;조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.520-525
    • /
    • 2003
  • A robust controller for large space structures(LSS) is studied from passivity point of view. While velocity sensors are commonly used for proportional-derivative (PD) control law to stabilize large space structures, if the structure can be controlled without velocity measurements, it is desirable against the failure of velocity sensors and for the cost reduction of the sensing system. In a recent result a dynamic output feedback control law has been provided using only displacement measurements. This paper presents a passivity-based controller design method and provides an alternative stability analysis tool for the previous displacement feedback robust control law. The closed-loop system can be viewed as a feedback interconnection of a passivated large space structure (LSS) and a strictly positive real (SPR) system.