• Title/Summary/Keyword: Passive systems

Search Result 1,065, Processing Time 0.027 seconds

An Implementation of Stabilizing Controller for 2-Axis Platform using Adaptive Fuzzy Control and DSP

  • Ryu, Gi-Seok;Kim, Jin-Kyu;Park, Jang-Ho;Kim, Dae-Young;Kim, Jong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.3-71
    • /
    • 2001
  • Passive Stabilization method and active stabilization method are mainly used to comprise a control system of platform stabilizer. Passive Stabilization method has demerits because of size and weight except that control structure is simple while active stabilization method using sensors can reduce size and weight, it requires high sensor technique and control algorithm. In this paper, a stabilizing controller using adaptive fuzzy control technique and floating-point processor(DSP) is suggested.

  • PDF

Evaluation of Passive Monitor for the Measuring of Personal Exposure to Nitrogen Dioxide in Indoor and Outdoor Air (실내 및 실외 공기중 이산화질소의 개인 노출량 측정을 위한 수동식 시료채취기의 성능평가)

  • 양원호;이기영;백도명
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.625-631
    • /
    • 2000
  • Practical devices for measuring personal exposure to nitrogen dioxide(NO$_2$) have been made for epidemiological studies of the health effects of air pollution Standard methods for NO$_2$ measurement such as the chemiluminescent method and Saltzman method are not suitable for personal exposure because they are heavy, large and complicated to operate. In this study, a passive monitor was tested for the measurements of indoor and outdoor NO$_2$ level. Through a comparative analysis of data sets obtained by on-site chemiluminescence system, we assessed the accuracy and precision of NO$_2$ passive monitors. We also examined the possibility of passive monitor in the study of indoor, outdoor and personal NO$_2$ exposure. The accuracy and precision of NO$_2$ passive monitor were analyzed assuming measurements of on-site chemiluminescence system is reference value and using duplicated measure- ments, respectively. From these analysis the NO$_2$ passive monitor was useful for measuring indoor, outdoor and personal exposure. And NO$_2$ level from on-site chemiluminescence systems could not properly represent the personal NO$_2$ exposure as well as indoor and outdoor level of ones house. Personal exposures were correlated more strongly with indoor NO$_2$ concentrations than with outdoor NO$_2$ concentrations. Since activity pattern of each person is different, it was considered that personal daily behavior and life-style might prevent the air pollutant exposure.

  • PDF

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

Vibration isolation with smart fluid dampers: a benchmarking study

  • Batterbee, D.C.;Sims, N.D.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.235-256
    • /
    • 2005
  • The non-linear behaviour of electrorheological (ER) and magnetorheological (MR) dampers makes it difficult to design effective control strategies, and as a consequence a wide range of control systems have been proposed in the literature. These previous studies have not always compared the performance to equivalent passive systems, alternative control designs, or idealised active systems. As a result it is often impossible to compare the performance of different smart damper control strategies. This article provides some insight into the relative performance of two MR damper control strategies: on/off control and feedback linearisation. The performance of both strategies is benchmarked against ideal passive, semi-active and fully active damping. The study relies upon a previously developed model of an MR damper, which in this work is validated experimentally under closed-loop conditions with a broadband mechanical excitation. Two vibration isolation case studies are investigated: a single-degree-of-freedom mass-isolator, and a two-degree-of-freedom system that represents a vehicle suspension system. In both cases, a variety of broadband mechanical excitations are used and the results analysed in the frequency domain. It is shown that although on/off control is more straightforward to implement, its performance is worse than the feedback linearisation strategy, and can be extremely sensitive to the excitation conditions.

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

Design of Continuous Alternate Wheels for an Omnidirectional Mobile Robot

  • Kim, Jeong-Keun;Byun, Kyung-Seok;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.829-834
    • /
    • 2003
  • Many types of omnidirectional wheels with passive rollers have gaps between rollers. Since these gaps cause a wheel to make discontinuous contact with the ground, they lead to vertical and/or horizontal vibrations during wheel operation. In addition, the radii of passive rollers are related to the height of a bump an omnidirectional wheel can surmount. In this research a new design of the alternate wheel is proposed. Because this wheel makes continuous contact with the ground and has alternating large and small rollers around the wheel, it is termed a continuous alternate wheel (CAW). In this paper a design procedure is also presented to determine the optimum number of rollers, the radii of rollers and the inside inclination angle of an outer roller for given design specifications. The CAW based on this design is compared to the existing alternate wheels in terms of design. Finally, an actual continuous alternate wheel is constructed to verify validity of the design guidelines.

  • PDF

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Comparison of auxiliary Feedwater and EDRS Operation during Natural Circulation of MRX

  • Kim, Jae-Hak;Park, Goon-Cherl
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.514-519
    • /
    • 1997
  • The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control roe drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation.

  • PDF

Compensative Microstepping Based Position Control with Passive Nonlinear Adaptive Observer for Permanent Magnet Stepper Motors

  • Kim, Wonhee;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1991-2000
    • /
    • 2017
  • This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle.