• 제목/요약/키워드: Passive Safety

검색결과 399건 처리시간 0.025초

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

빌딩간 연결을 통한 복합제어시스템의 최적설계 (Optimal Design of Hybrid Control System through Inter-Building Connection)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.81-88
    • /
    • 2017
  • This study deals with the optimal design of a hybrid control system composed of a combination of active control system and passive control system for effective seismic performance improvement of two adjacent structures. The proposed hybrid control system adopts a configuration of installing an active control device in one building and connecting two adjacent structures with a passive control device so that the one-side active control force can be bi-directionally applied to both buildings through the passive connecting devices. In order to derive the optimal performance of the proposed system, the design parameters of the passive and active control systems were searched using the genetic algorithm. Numerical simulations of 10-story and 8-story buildings have been performed to verify the effectiveness of the proposed technique. For the purpose of comparison, the conventional independent control system with two identical active control systems being installed separately for each structure was also optimally designed and its seismic response has been evaluated as well. From the comparative results of the two control systems, it is demonstrated that the proposed hybrid control system requires larger control force for its one-side active control device than the conventional independent control system does for each of both-side active devices, but quite less than the total control force required for both-side devices of the independent control system, while maintaining similar seismic performance. Therefore, the proposed system is more economical and reliable than the conventional independent control system with two identical active devices.

외피의 Passive Design 요소와 신재생에너지를 적용한 생물안전 밀폐시설의 에너지 시스템 개선방안 연구 (A Study on the Energy Improvement Plan of using Passive Design with Exterior Envelopes and Renewable Energy for Bio Safety Labotratory)

  • 황지현;범도;홍진관
    • 설비공학논문집
    • /
    • 제26권10호
    • /
    • pp.491-496
    • /
    • 2014
  • In general, the entire air supply of a bio-safety laboratory (BSL) should be exhausted on the outside to ensure bio-safety, and the air conditioning system should always be operated to maintain a difference in the room pressure. As a result, the annual energy consumption of such a building is approximately five or ten times higher than that of an office building of the same magnitude. Thus, this study applies an actual operating system that targets BSL. The energy consumption is analyzed using the Energy Plus V8.0 program (an energy analysis program), and five kinds of cases that depend on the energy consumption of the basic BSL system are also analyzed. As a result, the energy consumption in Case 1 (basic system) is of 324.95 GJ. When the basic system of Case 1 is compared to that in Case 2 (basic system+passive design with exterior envelopes), an annual energy savings of is 6.9% is achieved. For Case 3 (basic system+Photovoltaic, PV) 12.7% is achieved, and for Case 4 (Solar Geothermal Hybrid System of renewable energy, SGHS) 49.5% is achieved. If a passive design with exterior envelopes and renewable energy system (PV+SGHS) is combined, as in Case 5, the energy consumption would be 118.15 GJ. Therefore, when this last system is compared to a basic system, the passive design with exterior envelopes and renewable energy system (PV+SGHS) can reduce energy consumption by 63.6%.

휘발성 유기화합물용 수동식 시료채취기 개발 (Development of Passive Samplers for Volatile Organic Compounds)

  • 장미연;이광용;전현진
    • 한국산업보건학회지
    • /
    • 제32권4호
    • /
    • pp.359-370
    • /
    • 2022
  • Objective: This study is intended to design a commercially available passive sampler and conduct performance test on its use as a media for evaluating a working environment. Methods: This study was conducted to select adsorbents, design models, and evaluate storage stability and sampling rates for the development of new types of passive samplers. Results: The impurity detection, adsorbent capacity and breakthrough volume of five types of activated carbon were tested for selection of an adsorbent. One product was selected in consideration of the efficiency of purchase. A number of passive samplers were designed in a radial style and a badge style using plastic as a material. The final two prototypes were made using molds or 3D printing. For the storage stability evaluation, samples were stored at different temperature for 1~21 days and then analyzed. Most of the chemicals had excellent storage stability when refrigerated. However, some chemicals such as dichloromethane and methyl ethyl ketone need to be analyzed as soon as possible after sampling. Conclusion: In this study, new types of passive samplers for 66 chemical compounds were developed. The evaluation of storage stability and sampling rates showed different results depending on the properties of the chemical substance. For some chemicals such as methyl ethyl ketone and dimethylformamide, activated carbon is inappropriate as an absorbent. In future studies, additional experiments are required on chemicals that are difficult to collect with activated carbon.

SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구 (Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL)

  • 류성욱;배황;유효봉;변선준;김우식;신용철;이성재;박현식
    • 대한기계학회논문집B
    • /
    • 제40권3호
    • /
    • pp.165-172
    • /
    • 2016
  • 노심보충탱크(Core Makeup Tank, CMT), 안전주입탱크(SafetyInjection Tank, SIT)와 자동감압계통(Auto Depressurization System, ADS)로 구성된 1 계열의 SMART 피동안전주입계통의 주입특성을 파악하기 위한 소형냉각재상실사고(SBLOCA) 모의에 대한 실험적 연구가 수행되었다. SBLOCA의시험은 0.4 인치 안전주입수 배관파단에 대해 수행되었으며, 정상상태 조건은 실험요건서에 제시된 시험 초기 조건을 만족시키도록 746초 동안 운전되었다. 노심 출력 및 안전주입 유량 등의 경계 조건도 적절히 모의되었으며, 안전주입계통 배관에서의 파단, 히터 트립 및 잔열곡선 인가, 원자로냉각재펌프 관성서행(Coastdown), 급수 중단, CMT 및 SIT의 주입, ADS #1 개방이 SBLOCA 시나리오에 따라 적절히 모의되었다. 노심지지원통 내부의 액체환산수위는 파단 초반에 감소하다가 CMT와 SIT가 주입되면서 서서히 회복되었으며, 피동안전주입계통의 주입유량이 노심 수위를 회복하기에 충분한 것으로 판단할 수 있다.

일체형 원자로의 공랭식 열교환기 개념 연구 (A Conceptual Study of an Air-cooled Heat Exchanger for an Integral Reactor)

  • 문주형;김우식;김영인;김명준;이희준
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.49-54
    • /
    • 2016
  • A conceptual study of an air-cooled heat exchanger is conducted to achieve the long-term passive cooling of an integral reactor. A newly designed air-cooled heat exchanger is introduced in the present study and preliminary thermal sizing is demonstrated. This study mainly focuses on feasibility of an innovative air-cooled heat exchanger to extend the cooling period of the passive residual heat removal system(PRHRS) only in passive manners. A vertical shell-and-tube air-cooled heat exchanger is installed at the top of the emergency cooldown tank(ECT) to collect evaporated steam into condensate, which enables water inventory of the ECT to be kept. Finally, thermal sizing of an air-cooled heat exchanger is presented. The length and the number of tubes required, and also the height of a stack are calculated to remove the designated heat duty. The present study will contribute to an enhancement of the passive safety system of an integral reactor.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

차량 시뮬레이터를 이용한 첨단안전차량의 Human-in-the Loop 성능평가 (Human-in-the Loop Evaluation of Advanced Safety Vehicles Using a Vehicle Simulator)

  • 이경수
    • 오토저널
    • /
    • 제26권4호
    • /
    • pp.6-10
    • /
    • 2004
  • 자동차의 능동안전(Active Safety)을 중요시하는 경향은 1990년대부터 부각되기 시작하였다. 사고발생 후에 피해를 최소화하려는 Passive Safety 기술과 사고를 방지하고 사고의 피해를 줄이는 Active Safety 기술의 효과적인 조합을 통하여 안전을 확보하는 차량을 첨단 안전차량(ASV, Advanced Safety Vehicle)이라 한다.(중략)

  • PDF

APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석 (A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+)

  • 문호림;김한곤
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

  • Yoo, Jaewoon;Chang, Jinwook;Lim, Jae-Yong;Cheon, Jin-Sik;Lee, Tae-Ho;Kim, Sung Kyun;Lee, Kwi Lim;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1059-1070
    • /
    • 2016
  • The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.