• Title/Summary/Keyword: Passive Noise Control

Search Result 161, Processing Time 0.021 seconds

Active control of sound fields from vibrating plates using piezoelectric and viscoelastic material (압전재료와 점탄성재료를 이용한 평판진동 음장의 능동제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.311-315
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been carried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

  • PDF

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

A Controllers Comparison Experiment For Active-mount Control (능동마운트 제어를 위한 제어기 비교 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Kim, Ho-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.324-329
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

  • PDF

Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount (능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Sim, Ho-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

Optimal Design of Air-spring and Active Control of Vibration Isolation Table (공기스프링의 최적설계 및 방진 테이블의 능동 제어)

  • An, Chae-Hun;Kim, Ho-Sung;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.909-914
    • /
    • 2006
  • Vibration isolation tables are mostly required in precise measurement and manufacturing system. Among the vibration isolation tables, an air spring is the most favorable equipment because of low resonant frequency and high damping ratio. However, it is difficult to design the air spring with the required stiffness and damping ratio. Futhermore, whenever conventional active control methods are applied to the air spring, it may be difficult to obtain effective control performance due to high nonlinearity of air spring. In this paper, the optimal design of the air spring is performed using genetic algorithm to bring out low resonant frequency and high damping ratio. Also, active control of the vibration isolation table with 3-DOF model is proposed using the adaptive control method. Through experiments, optimal design is shown to be effective. And performance of the proposed control method is verified to be better than those of the passive control method and the conventional active control methods.

  • PDF

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.153-159
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Experimental study on reduction of impulsive noise generating at exit of high-speed railway tunnel (고속철도 터널출구에서 발생하는 충격성 소음의 저감을 위한 실험적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2375-2385
    • /
    • 1996
  • As a compression wave is emitted from a duct, an impulsive wave generates and causes an impulsive noise that is at present a serious environmental noise pollution. In order to clarify the acoustic characteristics of the noise and to reduce their pressure levels, a series of model experiments were conducted on the impulsive waves emitted from an open end of a shock tube. The impulsive waves with various intensities were obtained by controlling the operation pressure ratio of the shock tube. Various kinds of silencers such as the exit boxes with baffle plates, were applied to the duct exit to reduce the impulsive noises. The effects of geometry of silencers and shock Mach number on the noise reduction were clarified. From the measurements of sound pressure level, it was found that installing the baffle plate into the exit box is effective in lowering the noise level at far fields, and that the recommendable geometries of silencer are L/D=1, H/D=1 and H/D=0.75.

Active Vibration Control Experiment on Automobile Using Active Vibration Absorber (능동 동흡진기를 이용한 차량의 능동진동제어 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Oh, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.741-751
    • /
    • 2011
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mounts have been developed to cope with such specifications. In this study, the active vibration absorber which can be attached to the sub-frame of automobile is used for the suppression of vibrations caused by engine. The active vibration absorbing system consists of sensor, actuator and controller where a control algorithm is implemented using DSP. The vibration caused by engine reveals harmonic disturbances varying with engine revolution. Therefore, the control algorithm should be able to cope with harmonic disturbances. In this study, the modified higher harmonic control technique which can selectively suppress harmonic disturbance is considered. Experimental results on automobile show that the proposed active vibration absorbing system is effective in suppressing vibrations caused by engine.