• 제목/요약/키워드: Passive Micromixer

검색결과 8건 처리시간 0.025초

마이크로 믹서에서 와도 지수에 의한 비용해성 물질의 혼합 예측 (Prediction of Degree of Mixing for Insoluble Solution with Vortex Index in a Passive Micromixer)

  • 조일대;김범중;맹주성
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.232-238
    • /
    • 2005
  • The 'Mixing Index($D_I$)' is used as a conventional guidance measuring the degree of mixing for multiphase flows. For the case when insoluble solutions flow in a passive micromixer, a new method to calculate $D_I$ is proposed. The 'Vortex Index(${\Omega}_I$)' is suggested and formulated. We infer that ${\Omega}_I$ relates to the degree of chaotic advection. Various arbitrary shaped microchannels were tested to calculate the $D_I\;and\;{\Omega}_I$, and then a simple algebraic equation, $D_I=Aexp(B{\Omega}_I)$, is obtained. This equation may be used instead of the conventional partial differential equation, concentration equation, to estimate the degree of mixing.

수치해석을 이용한 패시브 마이크로 믹서의 성능평가 (Performance Assessment of Passive Micromixer using Numerical Analysis)

  • 이정익;김철규
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.237-242
    • /
    • 2018
  • 마이크로 믹서는 랩-온-어-칩이나 마이크로 유체 기기의 하나의 구성품으로 두 가지의 화학 물질을 혼합(융합)하는 장치이다. 본 연구는 다양한 형상의 패시브 마이크로 믹서의 성능을 평가하는 것을 목적으로 한다. 다양한 형상의 마이크로 믹서는 총 6가지의 형상을 비교하였고, 서로 동일한 수력 직경을 갖도록 3차원 모델링하였다. 내부 혼합 유동을 전산모사하기 위해여 상용 유동해석 프로그램인 ANSYS Fluent를 사용하였다. 수치해석 방법은 본 논문에 자세하게 기술하였다. 마이크로 믹서의 성능 평가는 혼합 지수와 압력 강하로 비교하였고, 결론적으로 CDM-8T은 합리적인 혼합성능과 상대적으로 낮은 압력 강하를 갖는 것으로 나타났다.

마이크로 혼합기와 반응기로 구성된 DNA 결찰용 바이오칩에 관한 연구 (A Study About Biochip Combined with Micro Mixer and Reactor for DNA Ligation)

  • 강도형;안유민;황승용
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.624-632
    • /
    • 2008
  • In this research, we developed new PDMS-glass based microbiochip consisted of the micromixer and microreactor for DNA ligation. The micromixer was composed of a straight channel integrated with nozzles and pillars, and the microreactor was composed of a serpentine channel. We coated the PDMS chip surface with the 0.25wt.% PVP solution to prevent the bubble generation which was caused by the hydrophobicity of the PDMS. The new micomixer was passive type and the mixing was enhanced by a convective diffusion using the nozzle and pillar. The 10.33mm long micromixer showed the good mixing efficiency of 87.7% at 500 l/min flow rate. We could perform the DNA ligation successfully in the microbiochip, and the ligation time was shortened from 4 hours in conventional laboratory method to 5 min in the microbiochip.

Y-Channel 마이크로 믹서의 혼합 개선을 위한 연구 (Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing)

  • 김진욱;김상우;이도형;강형민
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.851-857
    • /
    • 2010
  • 작은 장치 스케일과 낮은 Reynolds number를 수반하는 마이크로 채널에서의 혼합효율 최대화를 위하여 사각형 장애물을 이용한 Passive 마이크로 믹서의 최적 설계를 수행하였다. 이를 위해 본 연구에서는 구조가 단순한 Y-Channel내부에 사각형 장애물의 개수와 그 크기, 그리고 위치를 변화시켜가면서 비정렬 해석 기법을 이용하여 해석을 수행하였다. 또한 최대 허용 압력 강하값을 제한 조건으로 설정하여 제한조건을 만족하면서 혼합 효율을 최대화하는 Y-Channel 형상의 최적화를 수행하였다. 이를 통하여 2개의 사각형 장애물을 사용할 경우 원형 장애물의 결과와 비교했을 때 최대 2.5% 혼합 효율이 향상됨을 확인하였다.

배리어가 포함된 카오스 마이크로 믹서의 개발 (Development of a Barrier Embedded Chaotic Micromixer)

  • 김동성;이석우;권태헌;이승섭
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.63-69
    • /
    • 2004
  • It is of great interest to enhance mixing performance in a microchannel in which the flow is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved in this laminar flow regime. In this regard, we present a new chaotic passive micromixer, named Barrier Embedded Micromixer (BEM), of which the mixing mechanism is based on chaotic flows. In BEM, chaotic flow is induced by periodic perturbation of the velocity field due to periodically inserted barriers along the channel wall while a helical type of flow is obtained by slanted grooves on the bottom surface of the channel in the pressure driven flow. To experimentally compare the mixing performance, a T-microchannel and a microchannel with only slanted grooves were also fabricated. All microchannels were made of PDMS (Polydimethylsiloxane) from SU-8 masters that were fabricated by conventional photolithography. Mixing performance was experimentally characterized with respect to an average mixing intensity by means of color change of phenolphthalein as pH indicator. It was found that mixing efficiency decreases as Re increases for all three micromixers. Experimental results obviously indicate that BEM has better mixing performance than the other two. Chaotic mixing mechanism, suggested in this study, can be easily applied to integrated microfluidic systems , such as Micro-Total-Analysis-System, Lab-on-a-chip and so on.

LOC적용을 위한 새로운 마이크로믹서의 연구 (A Study on the Novel Micro Mixer for the Application of LOC)

  • 최범규;이승현;강호진
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.143-149
    • /
    • 2008
  • This paper presents the results of the study on the novel micro mixer. Existing micro mixer is classified as active mixing and passive mixing by the mixing principles. Both mixing principles have problems. For solving these problems, this research has developed the novel micro mixers based on a totally different principle compared with former mixers. They not only have a simpler structure than former ones but also are able to achieve high mixing efficiency in spite of low power consumption due to using Lorentz Force. In addition, they are designed to increase the efficiency of mixing by changing the rotating direction of fluid with a polar switching circuit. Driving forces of the mixer are Lorentz force and a moving force of fluid due to electrophoresis. Because the efficiency of mixer is affected by electrode shape, several models have been made. The computer simulation has been made to estimate the efficiency of each mixer.

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF