DOI QR코드

DOI QR Code

Prediction of Degree of Mixing for Insoluble Solution with Vortex Index in a Passive Micromixer

마이크로 믹서에서 와도 지수에 의한 비용해성 물질의 혼합 예측

  • 조일대 (한양대학교 대학원 기계공학과) ;
  • 김범중 (한양대학교 대학원 기계공학과) ;
  • 맹주성 (한양대학교 기계공학부)
  • Published : 2005.02.01

Abstract

The 'Mixing Index($D_I$)' is used as a conventional guidance measuring the degree of mixing for multiphase flows. For the case when insoluble solutions flow in a passive micromixer, a new method to calculate $D_I$ is proposed. The 'Vortex Index(${\Omega}_I$)' is suggested and formulated. We infer that ${\Omega}_I$ relates to the degree of chaotic advection. Various arbitrary shaped microchannels were tested to calculate the $D_I\;and\;{\Omega}_I$, and then a simple algebraic equation, $D_I=Aexp(B{\Omega}_I)$, is obtained. This equation may be used instead of the conventional partial differential equation, concentration equation, to estimate the degree of mixing.

Keywords

References

  1. Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G, Santiago, J.G, Adrian, R.J., Aref, H. and Beebe, D.J., 2000, 'Passive Mixing in a Three-Dimensional Serpentine Microchannel,' J. Microelectromech. Syst., Vol. 9, pp. 190-197 https://doi.org/10.1109/84.846699
  2. Beebe, J. D., Adrian, J. R., Olsen, G. M., Stremler, A. M., Aref, H. and Jo, B., 2001, 'Passive Mixing in Microchannels : Fabrication and Flow Experiments,' Mec. Ind., Vol. 2, No.2, pp. 343-348 https://doi.org/10.1016/S1296-2139(01)01114-9
  3. Costin, D. C. and Synovec, E. R., 2002, 'Measuring the Transverse Concentration Gradient Between Adjacent Laminar Flow in a Microfluidic Device by a Laser-Based Refractive Index Gradient Detector,' Talanta, Vol. 58, No.3, pp. 551-560 https://doi.org/10.1016/S0039-9140(02)00321-1
  4. Liu, Y. Z., Kim, B. and Sung, H., 2003, 'Two-Fluid Mixing in a Microchannel,' KSCFE Journal, Vol. 8, No.2, pp. 16-23
  5. Wu, Z., Nguyen, N. and Huang, X., 2004, 'Nonlinear Diffusive Mixing in Microchannels: Theory and Experiments,' J. Micromech. Microeng, Vol. 14, No. 4, pp. 604-611 https://doi.org/10.1088/0960-1317/14/4/022
  6. Choi, H., Lee, D. and Maeng, J., 2003, 'A Node-Centered Pressure-Based Method for All Speed Flows on Unstructured Grids,' Numerical heat transfer Part B, Fundamentals, Vol. 44, No.2, pp. 165-186 https://doi.org/10.1080/10407790390203438
  7. Antonini, G., Gelus, M., Guiffant, G. and Zoulalian, A., 1981, 'Caracteristiques des Transferts Simultanes de Masse et de Quantite de Mounement dans des Ecoulements de Recirculation Force,' Int. J. Heat Mass transfer, Vol. 24, No.8, pp. 1313-1323 https://doi.org/10.1016/0017-9310(81)90182-4
  8. Nishmura, T. and Kunitsugu, K., 1997, 'Fluid Mixing and Mass Transfer in Two-Dimensional Cavities with Time-Periodic Lid Velocity,' Int. J. Heat and Fluid Flow, Vol. 18, No.5, pp. 497-506 https://doi.org/10.1016/S0142-727X(97)00023-4