• Title/Summary/Keyword: Passive Design

Search Result 1,389, Processing Time 0.034 seconds

Design of SR Drive Using Passive Converter for Hydraulic Pump System (패시브 컨버터를 적용한 유압유니트용 SRM 제어기 설계)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.863_864
    • /
    • 2009
  • Design and drive characteristics of SR drive for hydraulic pump system using passive converter is presented in this paper. In oder to get the high performance, a simple passive circuit is added in the front-end of a conventional asymmetric converter, which consists of three diodes and one capacitor. This passive converter has the high demagnetization voltage, to reduce the demagnetization time. Futhermore optimal turn-off angle for the proposed passive converter is proposed. According to motor speed and current, an optimal turn-off angle can be achieved by look-up table to reduce torque ripple. The characteristic of proposed hydraulic pump system using passive converter is verified by simulation and experimental results.

  • PDF

A Passive Multiple Trailer System with Off-axle Hitching

  • Lee, Jae-Hyoung;Woojin Chung;Kim, Munsnng;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.289-297
    • /
    • 2004
  • This paper deals with the design and control of passive multiple trailer systems for practical applications. Due to the cost and complexity of the trailer mechanism, passive systems are preferred to active systems in this research. The design and control objective is to minimize the trajectory tracking errors occurring in passive multiple trailers. Three sorts of passive trailer systems, off-hooked, direct-hooked, and three-point, are discussed in this paper. Trajectory tracking performance and stability issues under constant curvature reference trajectories are investigated for these three types. As well, various simulations and experiments have been performed for each type. It is shown that the proposed off-hooked trailer system produces a tracking performance that is superior to the others.

A Study on the Energy Improvement Plan of using Passive Design with Exterior Envelopes and Renewable Energy for Bio Safety Labotratory (외피의 Passive Design 요소와 신재생에너지를 적용한 생물안전 밀폐시설의 에너지 시스템 개선방안 연구)

  • Hwang, Ji Hyun;Bum, Do;Hong, Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.491-496
    • /
    • 2014
  • In general, the entire air supply of a bio-safety laboratory (BSL) should be exhausted on the outside to ensure bio-safety, and the air conditioning system should always be operated to maintain a difference in the room pressure. As a result, the annual energy consumption of such a building is approximately five or ten times higher than that of an office building of the same magnitude. Thus, this study applies an actual operating system that targets BSL. The energy consumption is analyzed using the Energy Plus V8.0 program (an energy analysis program), and five kinds of cases that depend on the energy consumption of the basic BSL system are also analyzed. As a result, the energy consumption in Case 1 (basic system) is of 324.95 GJ. When the basic system of Case 1 is compared to that in Case 2 (basic system+passive design with exterior envelopes), an annual energy savings of is 6.9% is achieved. For Case 3 (basic system+Photovoltaic, PV) 12.7% is achieved, and for Case 4 (Solar Geothermal Hybrid System of renewable energy, SGHS) 49.5% is achieved. If a passive design with exterior envelopes and renewable energy system (PV+SGHS) is combined, as in Case 5, the energy consumption would be 118.15 GJ. Therefore, when this last system is compared to a basic system, the passive design with exterior envelopes and renewable energy system (PV+SGHS) can reduce energy consumption by 63.6%.

Development and Application of Passive Climatic Design Tool Using Building Bioclimatic Chart for Energy Efficient Building (건물생체기후도를 이용한 자연형 기후설계 도구 개발 및 활용)

  • Song, Seung-Yeong
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • It is essential to know climatic characteristics of the site for energy efficient building design. However, it is difficult to obtain a climate data. Even though the climate data is obtained, it is difficult to be applied to the building design since it is usually consisted of just series of numbers. Also, designers cannot know the effective climatic design strategies suitable for the site with ease. Thus, this study aims to develope the climatic design tool working on the personal computer operated by windows 95/98/2000/XP. WYEC weather data and building bioclimatic chart are adopted for the climate analysis. Climatic Characteristics(distributions of the dominant factors, bioclimatic needs, needs to each passive design strategy, and the order of priority, etc.) of Seoul are analysed and presented as an example. Also, passive climatic design process making use of this tool is presented.

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

Recent Advances in Passive Radiative Cooling: Material Design Approaches

  • Heegyeom Jeon;Youngjae Yoo
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.22-33
    • /
    • 2024
  • Passive radiative cooling is a promising technology for cooling objects without energy input. Passive radiative cooling works by radiating heat from the surface, which then passes through the atmosphere and into space. Achieving efficient passive radiative cooling is mainly accomplished by using materials with high emissivity in the atmospheric window (8-13 ㎛). Research has shown that polymers tend to exhibit high emissivity in this spectral range. In addition to elastomers, other materials with potential for passive radiative cooling include metal oxides, carbon-based materials, and polymers. The structure of a passive radiative cooling device can affect its cooling performance. For example, a device with a large surface area will have a greater amount of surface area exposed to the sky, which increases the amount of thermal radiation emitted. Passive radiative cooling has a wide range of potential applications, including building cooling, electronics cooling, healthcare, and transportation. Current research has focused on improving the efficiency of passive radiative cooling materials and devices. With further development, passive radiative cooling can significantly affect a wide range of sectors.

Design of Continuous Alternate Wheels for an Omnidirectional Mobile Robot

  • Kim, Jeong-Keun;Byun, Kyung-Seok;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.829-834
    • /
    • 2003
  • Many types of omnidirectional wheels with passive rollers have gaps between rollers. Since these gaps cause a wheel to make discontinuous contact with the ground, they lead to vertical and/or horizontal vibrations during wheel operation. In addition, the radii of passive rollers are related to the height of a bump an omnidirectional wheel can surmount. In this research a new design of the alternate wheel is proposed. Because this wheel makes continuous contact with the ground and has alternating large and small rollers around the wheel, it is termed a continuous alternate wheel (CAW). In this paper a design procedure is also presented to determine the optimum number of rollers, the radii of rollers and the inside inclination angle of an outer roller for given design specifications. The CAW based on this design is compared to the existing alternate wheels in terms of design. Finally, an actual continuous alternate wheel is constructed to verify validity of the design guidelines.

  • PDF

Conceptual Safety Design Analyses of Korea Advanced Liquid Metal Reactor

  • Suk, S.D.;Park, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.66-82
    • /
    • 1999
  • The national long-term R&D program, updated in 1997, requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor(KALIMER), along with supporting R&D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R&D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of HAMMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation.

  • PDF

Design and Analysis of a Passive-type Self-bearing Step Motor (수동형 셀프-베어링 스텝모터의 설계 및 성능해석)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.415-420
    • /
    • 2006
  • This paper introduces a new self-bearing motor which combines a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the theory of active magnetic bearings and therefore have some difficulties in design of the complicated flux distribution and control of the levitation force and the torque independently, the proposed self-bearing motor has a very simple and novel structure and operating principle. for the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. On the other hand, its rotation principle is quite similar to that of a conventional homopolar step motor. In this paper, we introduce the basic structure and the operating principle in detail, and show some results of FEM analysis to predict the performance of the proposed self-bearing motor and further, to get the optimal design parameters.

  • PDF