• Title/Summary/Keyword: Passive Component

Search Result 200, Processing Time 0.026 seconds

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

A Semi-MMIC Hair-pin Resonator Oscillator for K-Band Application (K-Band용 SEmi-MMIC Hair-pin 공진발진기)

  • 이현태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1635-1640
    • /
    • 2000
  • In this paper, a 18 GHz oscillator is designed with the push-push method an fabricated by semi-MMIC process, in which the second harmonic is the main output signal with the suppressed fundamental mode. In semi-MMIC process, passive components with microstrip transmission line are implemented using MMIC process on semi-insulating GaAs substrate. Then, chip types of P-HEMT, resistors, and capacitors are connected through Au wire-bonding. Also, the ground plane is inserted around the circuit and connected each other with the back-side of substrate through Au wire-bonding instead of via-hole. The semi-MMIC push-push oscillator shows the output powder of -10.5 dBm, the fundamental frequency suppression of -17.3 dBc/Hz, and the phase noise of -97.9 dBc/Hz at the offset frequency of 100 kHz.

  • PDF

Bayesian model updating for the corrosion fatigue crack growth rate of Ni-base alloy X-750

  • Yoon, Jae Young;Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Yong Jin;Kim, Sung Hyun;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.304-313
    • /
    • 2021
  • Nickel base Alloy X-750, which is used as fastener parts in light-water reactor (LWR), has experienced many failures by environmentally assisted cracking (EAC). In order to improve the reliability of passive components for nuclear power plants (NPP's), it is necessary to study the failure mechanism and to predict crack growth behavior by developing a probabilistic failure model. In this study, The Bayesian inference was employed to reduce the uncertainties contained in EAC modeling parameters that have been established from experiments with Alloy X-750. Corrosion fatigue crack growth rate model (FCGR) was developed by fitting into Paris' Law of measured data from the several fatigue tests conducted either in constant load or constant ΔK mode. These parameters characterizing the corrosion fatigue crack growth behavior of X-750 were successfully updated to reduce the uncertainty in the model by using the Bayesian inference method. It is demonstrated that probabilistic failure models for passive components can be developed by updating a laboratory model with field-inspection data, when crack growth rates (CGRs) are low and multiple inspections can be made prior to the component failure.

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

Studies on the millimeter-wave Passive Imaging System III (밀리미터파 수동 이미정 시스템 연구 III)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.111-116
    • /
    • 2007
  • We have developed a passive millimeter wave (PMMW) imaging system with two-dimensional imaging arrays. For the imaging system we achieved single-substrate imaging-array element which include all necessary component such as Fermi tapered slot antenna (TSA), a balun, LNA's and a detector circuit on it. Two-dimensional arrays for real-time imaging at the 35 GHz band are currently under development. We will be able to make an advanced PMMW image system based on our system with the $2\times2$ imaging array in the near future.

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

The Fabrication and Characterization of Diplexer Substrate with buried 1005 Passive Component Chip in PCB (PCB내 1005 수동소자 내장을 이용한 Diplexer 구현 및 특성 평가)

  • Park, Se-Hoon;Youn, Je-Hyun;Yoo, Chan-Sei;Kim, Pil-Sang;Kang, Nam-Kee;Park, Jong-Chul;Lee, Woo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.41-47
    • /
    • 2007
  • Today lots of investigations on Embedded Passive Technology using materials and chip components have been carried out. We fabricated diplexers with 1005 sized-passives, which were made by burying chips in PCB substrate and surface mounting chip on PCB. 6 passive chips (inductors and capacitors) were used for the frequency divisions of $880\;MHz{\sim}960\;MHz(GSM)$ and $1.71\;GHz{\sim}1.88\;GHz(DCS)$. Two types of diplxer were characterized with Network analyzer. The chip buried diplexer showed extra 5db loss and a little deviation of 0.6GHz at aimed frequency areas, whereas the chip mounted diplexer showed man. 0.86dB loss within GSM field and max. 0.68dB within DCS field respectively. But few degradations were observed after $260^{\circ}C$ for 80min baking and $280^{\circ}C$ for 10sec solder floating.

  • PDF

Comparative Analysis on the Characteristic of Typical Meteorological Year Applying Principal Component Analysis (주성분분석에 의한 TMY 특성 비교분석)

  • Kim, Shin Young;Kim, Chang Ki;Kang, Yong Heack;Yun, Chang Yeol;Jang, Gil Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.67-79
    • /
    • 2019
  • The reliable Typical Meteorological Year (TMY) data, sometimes called Test Reference Year (TRY) data, are necessary in the feasibility study of renewable energy installation as well as zero energy building. In Korea, there are available TMY data; TMY from Korea Institute of Energy Research (KIER), TRY from the Korean Solar Energy Society (KSES) and TRY from Passive House Institute Korea (PHIKO). This study aims at examining their characteristics by using Principle Component Analysis (PCA) at six ground observing stations. First step is to investigate the annual averages of meteorological elements from TMY data and their standard deviations. Then, PCA is done to find which principle components are derived from different TMY data. Temperature and solar irradiance are determined as the main principle component of TMY data produced by KIER and KSES at all stations whereas TRY data from PHIKO does not show similar result from those by KIER and KSES.