• Title/Summary/Keyword: Passivation

Search Result 840, Processing Time 0.026 seconds

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF

Inhibition of Plaque Formation on the Titanium Surface by Anti-bacterial Varnish (항균제 처리한 titanium 표면의 치태형성 억제효과)

  • Chung, Hyun-Ju;Lee, Sang-Hyun;Kim, Yung-Jun;Williams, Ray C.
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.707-727
    • /
    • 2000
  • 매식된 인공치아의 성공을 위해서는 적절한 교합과 수동적 적합성을 갖는 보철물의 제작과 구강내 노출 직후부터의 세균성 치태조절이 요구된다. 본 연구는 전처리(passivation과 tridodecyl - methyl - ammonium chloride(TDMAC) 처리)가 다른 타이타늄 표 면에 chlorhexidine varnish와 테트라사이클린 을 도포시 약제의 방출역학을 알아보고 구강내 치태형성의 억제정도를 평가하기 위하여 시행 되었다. 이를 위해 방출용액으로 인산완충액 성분의 인조타액을 1일${\sim}$1개월간 매일 교환하여 약제농도를 측정하고 타이타늄 박막에 잔류한 약제 활성을 측정하였으며 항균제 도포한 타이타늄 원판을 부착한 장치를 구강내 위치시킨 1일${\sim}$3주 후 원판을 제거하여 주사전자현미경으로 세균 부착상을 관찰하였다. 테트라사이클린은 TDMAC 처리된 표면에서 $10{\sim}18$일까지 유효농도로 방출되었고 표면의 유효 항균 활성은 $3{\sim}4$주간 유지되었으며, chlorhexidine varnish 도포 시에는 TDMAC 전처리시 초기에 $3{\sim}7$일 간 증가한 유효 항균 활성을 방출하여 매식지대치 등에 이러한 항균제도포 시 매식치 주위환경에 항균활성 공급원으로 작용할 수 있음을 보였다. 주사현미경적 관찰시 모든 타이타늄 표면에서 구강내 위치 30분 후에는 세균이 부착되어 있지 않고 타액 단백질 성분에서 유래한 것으로 보이는 피막물질이 표면을 부분 또는 전면에 걸쳐 덮고 있었다. 구강내 노출 2시간 후 항균제 미도포 표본들에는 약간의 구균이 단층으로, $1{\sim}3$일 후에는 부분적으로 두꺼운 세균층을 형성하였고 7일 후에는 표면전체에 걸쳐 세균층이 덮여있었으며 주로 구균과 약간의 간균이 주종을 이루었다. 항균제 도포시 구강내 노출 1주일 이전까지는 미도포군에 비해 치태형성이 지연되는 경향을 보였지만 2주 이후에는 세균 수나 치태형성 양상이 유사하였다. 이 연구로부터 항균제 도포시 1주일 이전의 초기 치태형성을 감소시킬 수 있음을 알 수 있었으며 이러한 연구결과는 타이타늄 임프란트 지대치 표면에 항균제의 도포가 임상적으로 유용할 수 있음을 시사하였다.

  • PDF

The Silicon Nitride Films according to The Frequency Conditions of Plasma Enhanced Chemical Vapor Deposition (PECVD의 주파수 조건에 따른 $SiN_x$막 증착)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Jung, Jong-Dae;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • The silicon nitride ($SiN_x$) film for surface passivation and anti-reflection coating of crystalline silicon solar cell is very important and it is generally deposited by plasma enhanced chemical vapor deposition (PECVD). PECVD can be divided into low and high frequency method. In this paper, the $SiN_x$ film deposited by low and high frequency PECVD method was studied. First, to optimize the $SiN_x$ film deposited by low frequency PECVD method, the refractive index was measured by varying the process conditions like $SiH_4$, $NH_3$, $N_2$ gas rate, and RF power. When $SiH_4$ gas rate was increased and $NH_3$ gas rate was decreased, the refractive index was increased. The refractive index was also increased with RF power decline. Second, to compare the characteristics of the low and high frequency PECVD $SiN_x$ film, the refractive index was measured by varying $NH_3/SiH_4$ gas ratio and RF power and the minority carrier lifetime of before and after high temperature treatment process was also measured. The refractive index of both low and high frequency PECVD $SiN_x$ film was decreased with increase in $NH_3/SiH_4$ gas ratio and RF power. After high temperature treatment process, the minority carrier lifetime of both low and high frequency PECVD $SiN_x$ film was increased and increased degree was similar. The minority carrier lifetime of low frequency PECVD $SiN_x$ was increased from $11.03{\mu}m$ to $28.24{\mu}m$ and that of high frequency PECVD $SiN_x$ was increased from $11.60{\mu}m$ to $27.10{\mu}m$.

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Performance assessment of Magnesium Bipolar Plates for Light Weight PEM Fuel Cell (PEM 연료전지 경량화를 위한 마그네슘 분리판의 성능평가)

  • Park, To-Soon;Lee, Dong-Woo;Kim, Kyung-Hwan;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1063-1069
    • /
    • 2012
  • In present paper, we used magnesium alloy having a lower density and higher electrical conductivity for bipolar plate to reduce the weight of PEM fuel cell. The silver was coated to prevent corrosion and form passivation film on the metal surface with sputtering. In acid proof evaluation for setting optimal coating conditions, the homogeneity of coating thickness was improved by coating with the thickness of 3 ${\mu}m$ which not indicated any micro cracks and the temperature $180^{\circ}C$. The performance test and evaluation based on the clamping pressure and channel depth to determine the configuration of bipolar plate for assembling single cell was implemented. And then we assembled single cell with this bipolar plate and implemented the performance test to ensure and compare the current-voltage performance followed as several factors such as coating or non-coating, the change of clamping pressure, the change of channel depth, etc. As these results, the maximum power density of single cell with the coated bipolar plate was 192 $mW/cm^2$ and it was confirmed that the power density per unit mass was better than existing metal bipolar plate.

유연성 소자 적용을 위한 $SiO_x$ 보호막의 특성 평가

  • Jeong, Yu-Jeong;Jeong, Jae-Hye;Yun, Jeong-Heum;Lee, Seong-Hun;Lee, Geon-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.452-452
    • /
    • 2010
  • 차세대 디스플레이로서 주목 받고 있는 유연성 정보표시 소자 개발에 대한 요구도가 날로 증대되고 있다. 유연성 정보표시 소자로서 플라스틱 기반 유연성 소자가 특히 주목 받고 있으나, 이의 실용화를 위해서는 플라스틱 기판에 적용 가능한 보호막 형성 기술 개발이 선행되어야 한다. 플라스틱 필름의 경우 높은 산소 및 수분 투과율 때문에 유연성 디스플레이의 응용에 걸림돌이 되고 있다. 플라스틱 기반 유연성 소자의 장수명화를 위해서는 수분과 산소의 투과를 방지하는 passivation layer 형성 기술이 필수적으로 요구된다. 본 연구에서는, polyethylene terephethalate (PET) 기판상에 증착된 $SiO_x$ 보호막의 합성에 있어서 중간층 유무에 따른 투습특성의 변화를 살펴보았다. 기화된 HMDSO (Hexamethyldisiloxane)와 Ar 및 $O_2$ 혼합기체를 이용하여 PECVD 방법으로 $SiO_x$ 박막을 합성하였다. 15 nm 두께의 $Al_2O_3$를 중간층으로 사용하여 중간층 유무에 따른 초기성장 거동 변화가 $SiO_x$ 박막의 투습 특성에 미치는 영향을 조사하였다. $SiO_x$ 박막 구조와 화학적 조성은 각각 FE-SEM과 FT-IR을 이용하여 분석하였으며, AFM을 이용하여 $SiO_x$ 박막 표면 미세 형상을 관찰하였다. 투습률은 MOCON사(社)의 Permatran-W 3/33 MA을 이용하여 측정하였다. 그리고 반복 굽힘 시험기를 이용하여 $SiO_x$ 보호막의 동적 투습 특성을 조사하였다. $Al_2O_3$ 중간층 유무에 따라 $SiO_x$ 박막의 투습률 (WVTR; water vapor transmission rate)은 ${\sim}10^{-1}g/m^2/day$(300 nm-thick $SiO_x$/PET)에서 ${\sim}5{\times}10^{-3}g/m^2/day$(300 nm-thick $SiO_x$/15 nm-thick $Al_2O_3$/PET)으로 변화하였다. 300 nm-thick $SiO_x$/15 nm-thick $Al_2O_3$/PET 시편의 경우 곡지름 50 mm에서 1,000회 반복 굽힘 후에도 투습률 변화를 보이지 않았다. 이와 같은 $SiO_x$ 박막의 투습 특성 변화는 $Al_2O_3$ 중간층 유무에 따른 초기 성장 거동의 변화로 해석된다. FE-SEM 및 AFM 표면 미세 구조 관찰을 통한 초기 성장 거동 변화 조사 결과, $Al_2O_3$ 중간층 없이 PET 기판위에 $SiO_x$ 박막 증착한 경우 3 차원 성장을 하는 반면, PET기판위에 $Al_2O_3$ 중간층 형성 후 $SiO_x$ 박막 증착하는 경우 2 차원 성장을 하게 됨을 관찰하였다. 따라서 본 연구를 통하여, 플라스틱 기반 유연성 표시 소자에 적용하기 위한 $SiO_x$ 보호막 합성 에 있어서 초기 성장 거동의 변화가 투습 특성에 민감한 영향을 미침을 알 수 있었다.

  • PDF

Effect of SUS316L Bipolar Plate Corrosion on Contact Resistance and PEMFC Performance (SUS316L 분리판 부식에 의한 접촉저항 및 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.664-670
    • /
    • 2021
  • Stainless steel was applied as bipolar plate (BP) of polymer electrolyte membrane fuel cell (PEMFC) due to high mechanical strength, electrical conductivity, and good machinability. However, stainless steel was corroded and increased contact resistance resulting PEMFC performance decrease. Although the corrosion resistance could be improved by surface treatment such as noble metal coating, there is a disadvantage of cost increase. The stainless steel corrosion behavior and passive layer influence on PEMFC performance should be studied to improve durability and economics of metal bipolar plate. In this study, SUS316L bipolar plate of 25 cm2 active area was manufactured, and experiments were conducted for corrosion behavior at an anode and cathode. The influence of SUS316L BP corrosion on fuel cell performance was measured using the polarization curve, impedance, and contact resistance. The metal ion concentration in drained water was analyzed during fuel cell operation with SUS316L BP. It was confirmed that the corrosion occurs more severely at the anode than at the cathode for SUS316L BP. The contact resistance was increased due to the passivation of SUS316L during fuel cell operation, and metal ions continuously dissolved even after the passive layer formation.

Evaluation of 12nm Ti Layer for Low Temperature Cu-Cu Bonding (저온 Cu-Cu본딩을 위한 12nm 티타늄 박막 특성 분석)

  • Park, Seungmin;Kim, Yoonho;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • Miniaturization of semiconductor devices has recently faced a physical limitation. To overcome this, 3D packaging in which semiconductor devices are vertically stacked has been actively developed. 3D packaging requires three unit processes of TSV, wafer grinding, and bonding, and among these, copper bonding is becoming very important for high performance and fine-pitch in 3D packaging. In this study, the effects of Ti nanolayer on the antioxidation of copper surface and low-temperature Cu bonding was investigated. The diffusion rate of Ti into Cu is faster than Cu into Ti in the temperature ranging from room temperature to 200℃, which shows that the titanium nanolayer can be effective for low-temperature copper bonding. The 12nm-thick titanium layer was uniformly deposited on the copper surface, and the surface roughness (Rq) was lowered from 4.1 nm to 3.2 nm. Cu bonding using Ti nanolayer was carried out at 200℃ for 1 hour, and then annealing at the same temperature and time. The average shear strength measured after bonding was 13.2 MPa.

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface (Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석)

  • Choi, Seonghun;Kim, Gahui;Seo, Hankyeol;Kim, Sarah Eunkyung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.29-37
    • /
    • 2021
  • The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.