• Title/Summary/Keyword: Passing No.200 sieve

Search Result 25, Processing Time 0.027 seconds

Study on the Soil Compaction (Part 4) -The Influence of Soil Compadtion on Unconfined Compressive Strength and Coefficient of Permeability- (흙의 다짐에 관한 연구(제4보) -흙의 다짐이 -축골조강동 및 투수계수에 미치는 영향-)

  • 강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2003-2012
    • /
    • 1970
  • In order to the influence of grain size distribution on compressive strength and coefficient of permeability, unconfined compression test and permeability test were performed for seventy samples that have various grain-size distributions. Its results are as follows: 1. Maximum unconfined compressive strength appears at the dry side of optimum moisture content. 2. Unconfined compressive strength is proportional to the increase of percent passing of No. 200 sieve. 3. Precent of deformation in failure increases in proportion to the increase of percent passing of No. 200 sieve, and modulus of No. 200 sieve, and modulus of deformation also increases in proportion to percent passing of No. 200 sieve. 4. Unconfined compressive strength increases in proportion to uniformity coefficient, liquid limit and plastic index, but it decreases gradually according to the increase of coefficient of grading and classification area. 5. Maximum dry density decreases according to the increase of void ratio. 6. Coefficient of permeability decreases according to the increase of percent passing of No. 200 sieve, and when percent of No. 200 sieve, and when percent passing of No. 200 enlarged more than 40%, it becomes less than $10^{-6}cm/sec$ which is the limit of coefficient of permeability of core material for earth dam proposed by Lee. 7. Coefficient of permeability increases according to the increase of coefficient of grading, classification area and index of Talbot formula r, but it was rather decrease by the increase of uniformity coefficient. 8. Coefficient of permeability seems to depend on the size and the shape of the flow path which is a series of void to be concerned by the size and the proprton of soil grain, even though void ratios are same.

  • PDF

Study on the Soil Compaction (part II) The Influence of Passing Percentage of No. 200 Sieve on Soil Compaction (흙의 다짐에 관한 연구 (제2 보) -200번체 통과율이 다짐에 미치는 영향-)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.1
    • /
    • pp.1854-1860
    • /
    • 1970
  • Results of this study on the influence of percent passing of No. 200 sieve on soil compaction are as follows; 1. The higher maximum dry density of soil is, the lower optimum moisture content is. Maximum dry density is highest value and optimum moisture content is the lowest value in twocases that percents of No. 200 sieve are 30% in soils of which percents retained on No. 10 sieve are 5% and 10% respectively. 2. Maximum dry density increases according as uniformity coefficient increase. Maximum dry density is the highest when uniformity coefficient is approximately 300 in soil of which maximum diameter is 4.76mm. 3. Maximum dry density has a tendency to become large according as value of Cu Caincrease. Correlation between maximum dry density and $Log_{10}$(CuCa) shows straight line. 4. Maximum dry density increases according as n increase and reaches the peak when n equal 0.35 in condition that the index of talbot formula n is less than 0.35 in soil of which maximum diameter is 4.76mm. 5. Maximum dry density has a tendency to increase according as value of Cg $(Cg=\frac{P_{50}^2}{P_{10}{\times}{P_{200}}$) decrease.

  • PDF

A Study on the Effect of Some Physical Properties of Soil on the Compaction (흙의 물리적 성질이 다짐에 미치는 영향)

  • 김성교;김문기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4171-4183
    • /
    • 1976
  • This study is to investigate the effect of some physical properties of soil on the compaction. The compaction effect depends upon various factors such as soil type, moisture content, gradation and compaction energy. In this study, with steady compaction energy, the relationships between maximum dry density and moisture content, gradation and consistency were analyzed by soil types. Some results obtained in this study are summarized as follows 1. Generally, the coarser the grain size, the bigger is the maximum dry density and the smaller is the optimum moisture content and its moisture-dry denisty curve is relatively steep. The finner the grain size, the smaller is the max. dry density and the bigger is the opt. moisture content and its moisture-dry density curve is less steep. 2. The relationship between max. dry density (${\gamma}$dmax) and opt. moisture content, void ratio, clay content, percent passing of No. 200 sieve, liquid limit and plastic limit can be represented by the equation ${\gamma}$dmax =ao+a1X(a0>0, a1<0) 3. The relationship between opt. moisture content (Wopt) and clay content, percent passing of No. 200 sieve, liquid limit and plastic limit can be represented by the equation Wopt=a0+a1X(a0>0, al>0). 4. The fact that maximum dry density of the compacted soil is decreased with the increase of the optimum moisture content in any types of soil tested, and the fact that optimum moisture content can be positively correlated with clay content, percent passing of No. 200 sieve, liquid limit and plastic limit of the soil, lead to the conclusion that clay content, percent passing of No. 200 sieve, liquid limit and plastic limit of the soil are direct factors in reduction of the maximum dry density of engineering soil.

  • PDF

A Study of Correlation between Soil Characteristic and CBR value by Experimented Method (흙의 특성과 CBR과의 상관성에 관한 실험적 연구)

  • Park, Heung-Gyu;Kim, Kyung-Rok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • This study analyzed the correlation between the engineering characteristics of soils, and the CBR values in order to figure out the eligibility of quality criteria as construction materials, by attempting to reduce time and costs for the CBR testing and predicting the results of the CBR testing. The study also analyzed the correlation between the percent passing of No.200 sieve, liquid limit and compaction characteristics, on the basis of the soil testing data conducted at the Yeongdong construction area. This study will provide necessary data for road pavement plans and designs by analyzing the correlation between the percent passing of No.200 sieve, the degree of activity and the swelling rate, and suggest the correlation formula with each soil.

  • PDF

A Study on CBR Characteristics of National Highway in Yeongnam Region (영남지역 국도에 사용된 흙의 CBR 특성에 관한 연구)

  • Park, Yeong-Mog;Lee, Go-Hyeun;Kim, Nak-Seok;Cho, Gyu-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.535-543
    • /
    • 2016
  • This study has been carried out to evaluate the CBR characteristics and the correlations among every soil properties of National road in Yeongnam region. Total of 480 soil samples were collected from 41 administrative districts for more than 30 years. Their physical and mechanical properties such as natural water content, the Atterberg limit, No. 200 sieve passing, the compaction test and the CBR test results were involved. The soils in Yeongnam region, SM, SC, SP and CL by USCS have predominated approximately 79%. The test results show that average CBR values of gravel and sand range from 12.7% to 20.3% and those of silt and clay range from 4.8% to 7.1%. It means that average CBR values of fine grained soils are less than a half of coarse grained one. Natural water content, No. 200 sieve passing, optimum moisture content and maximum dry density of soils are well correlated with CBR values. Especially, it presents that No. 200 sieve passing is the best correlation factor with CBR value. If consider the partition off this region into 6 zones of classified by mother rock, the correlation between CBR value and every soil properties tends to increase. It is suggested that tables, figures and the regressions described in this paper may be available for designers and engineers to understand the characteristics of an embankment materials in Yeongnam region.

A Fundamental Study on the Adequacy of Use of Micro Fines Including in Crushed Aggregate Using Methylene Blue Test (메틸렌 블루 시험을 이용한 콘크리트용 부순모래에 함유된 미세골재의 사용타당성에 관한 기초적 연구)

  • 안남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.205-210
    • /
    • 2002
  • As the deposits of natural sands have slowly been depleted, it has resulted in an increase in manufactured fine aggregate (MFA). Standard specifications for fine aggregate for concrete contained in KS F 2558 permit a maximum of 7 percent finer than the No. 200 sieve (75${\mu}{\textrm}{m}$). Since the production process for MFA normally generates 10 to 20 percent of micro fines-which is defined as aggregates passing the No. 200 sieve (75${\mu}{\textrm}{m}$)-more than permitted by specifications, Excess fines must be removed by screening and/or washing operations. The amount of by-products will continue to grow as production increases with environmental discharge restrictions. This fundamental study focuses on experimental research for the adequacy of use of micro fines included in crushed aggregate using methylene blue test. Total of 63 types of sands from seven different rocks were tested. Based on the test results, the methylene blue test was turned out to be a good indicator of the quality of micro fines for concrete and a supplementary article and an amendment of the KS standard were recommended.

  • PDF

Study on the Soil Compaction (part 3) on Soil Compaction (흙의 다짐에 관한 연구(3) <10번체 잔류량이 다짐에 미치는 영향>)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1927-1936
    • /
    • 1970
  • This is a study on the influence of percent retaining of No. 10 sieve on soil compaction. Reviewing the test values in part 1 and part 2, a relative equation to predict maximum dry density and optimum moisture content was induced. Results of the study are as follow; 1. Maximum dry density increases according as percent retatining of No. 10 sieve increase untill 40%, but it decreases in more than 50%. 2. Maximum dry density has the greatest value at 25%, also it decreases according to increase or decrease at 25% in percent passing of No. 200 sieve. 3. Grain size distribution that Maximum dry density is largest, is 40% in 4.76mm to 2.0mm, 35% in 2.0mm to 0.074mm, 25% in lese than 0.074mm. 4. Correlation betwesn Maximum dry density and optimum moisture content made a curved line. The deviation between maximum dry density to be predicted from optimum moisture content and test values, is less than about 5%. 5. Range of deviation between optimum moisture content to be predicted from classification area and uniformity coefficient isless than about 20%, which belongs to range of moisture content that is correspondent with 95% of maximum dry density, generally.

  • PDF

A Study on the Bottom Ash Characteristics of Resonant Column Tests (공진주시험을 통한 Bottom Ash의 특성 연구)

  • Yoon, Won-Sub;Chae, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.81-95
    • /
    • 2011
  • This study investigates relative density test of standard sand and bottom ash which were devided into No.40, No.60, No.100, No.200 and resonant column tests were conducted for samples with the relative density of 40%, 55%, and 70% on the basis of the test results. Resonant column tests were also conducted for each residual bottom ash which contains the passing sample of No.200 with the relative density of 55%. By compressing each residual sample with the compaction energy of A-compact mold test, the passing percentage of No.200 sieve increased up to 30%, which led to the adjustment of relative density to 10%, 20%, and 30%. Test results show that maximum shear modulus and damping ratio of bottom ash are smaller than those of standard sand because crushing strength and unit weight of the former are smaller than those of the latter.

Application of Concrete with Crushed Sand on Site (부순모래 콘크리트의 현장 적용성)

  • 이성복;이도헌;최진만;김병환;박창수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.147-152
    • /
    • 1998
  • This study is to investigate the application of concrete with crushed sand on site. As a result, it is showed that the combined sand mixed with sea sand is very desirable for obtaining workability and strength of concrete, and the optimal replacement percentage of crushed sand is 50% with sea sand. After all, the crushed sand could be sufficiently used as a fine aggregate for concrete in the aspect of economical efficiency and quality, but the particle shape and microsand passing No.200 sieve should be firstly improved for increasing workability of concrete on site.

  • PDF

Correlation Between Physical and Compaction Characteristics of Various Soils (다양한 지반의 물리적 특성과 다짐특성 상관성)

  • Park, Choonsik;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • This study, to provide quantitative data related to compaction characteristics, identifies the compaction characteristics of various types of soil samplers, in relation to their particle-size distribution and plasticity degree, and the compaction characteristics of artificially created granular materials, in relation to their A & D compaction. The results of the experiments show as follows. $r_{dmax}$ of clay is less than those of both sand and gravel approximately by 10%. O.M.C of clay has turned out to be greater than sand and gravel approximately by 20% and 30%, respectively. Changes in the compaction characteristics can be observed clearly around 30~60% of sand and 30~50% of passing No.200 sieve. It has also been shown that the compaction characteristics related to LL and PL are similar to each other in changes, and that the compaction characteristics become less clear with higher percent of fine grained soil. The compaction characteristics of the artificially created granular materials and field materials have appeared almost similar to each other. $r_{dmax}$ is less approximately by 30% and O.M.C greater approximately by 20% in A compaction than in D compaction. As $r_{dmax}$ and O.M.C become greater, its rate increases.