• 제목/요약/키워드: Passenger side airbag

검색결과 13건 처리시간 0.019초

운전석 및 조수석 에어백 단품의 유한요소 모델링과 전개 과정 해석 (Finite Element Modeling of Folded Airbag and Analysis of Deployment Process)

  • 김헌영;이상근;신윤재
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.236-246
    • /
    • 1996
  • The deployment process of fully folded airbag is analyzed. The methodology of finite element modeling is presented for flat driver side airbag and 3-dimensional passenger side airbag. 'Initial metric option' is used to model 3-dimensional passenger side airbag before deployment. The deformed shapeds and pressure waveforms inside cushion evaluated from simulation are compared to the test results. The agreements between the simulation and the experiments are satisfactory, and the results of simulation are confirmed to be applied to the design of airbag module.

  • PDF

승객 상해치 감소를 위한 측면 에어백의 역할 (Role of Side Impact Airbag in Order to Reduce Passenger Injury Value)

  • 김동석;이명식
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.142-151
    • /
    • 1997
  • In order to reduce passenger injuries in side collisions, car makers are developing a side impact airbag system while Volvo has already adopted. This study examines dummy injury reduction effect of a side airbag system using full car side impact simulation according to FMVSS 214 test procedure. The simulation result without side airbag shows a good correlation with test data. The folded airbag simulation is carried out to check main design factors. Through the simulation with side airbag module integrated in the seat frame, it is found that the side airbag system provides a substantially enhanced protection for car occupants in side collisions.

  • PDF

측면 충돌 시 센터에어백이 승객의 거동 및 머리상해에 미치는 영향 (The Effectiveness of Center Airbag on Passenger Kinematics and Head Injury in Side Collisions)

  • 박지양;김동섭;곽영찬;손창기;윤영한
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.7-12
    • /
    • 2018
  • The Korean New Car Assessment Program (KNCAP) is a program to evaluate the safety of automobiles. In the safety assessment method, there are frontal collision, partial frontal collision, side collision, pillar collision, and left stability in the collision safety category. Among them, Korean in-depth analysis data shows that there are a lot of side collision accidents and it is necessary to protect them. This study will analyze the side collision accident that occurred in actual traffic accident based on Korea In-Depth Accident Study (KIDAS) and investigate the effect of center airbag on passenger in under side collision. In addition, with simulated side collision scenarios in the various side impact directions, it was investigated how the center airbag affects the driver and passenger in terms of kinematic and injury levels.

티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계 (Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength)

  • 최환영;공병석;박동규
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

반응표면법을 이용한 커튼 에어백 시스템의 최적설계 (An Optimal Design of the Curtain Airbag System Using the Response Surface Method)

  • 윤용원;박경진
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.129-135
    • /
    • 2013
  • 자동차 측면 충돌사고는 충격흡수공간이 충분하지 않기 때문에 정면 충돌사고와는 달리 발생빈도에 비하여 탑승자의 상해비율이 매우 높은 경향을 나타낸다. 측면 충돌사고 발생시 탑승자를 보호하기 위하여 전세계 각국에서는 자동차안전기준 및 안전도평가 등의 법규를 시행 및 강화하고 있다. 그러나 차체 자체의 충격흡수력을 이용한 수동 안전방식으로는 협소한 공간에 기술을 적용하는데 한계가 있다. 커튼 에어백은 측면 에어백과 함께 현재로서는 측면충돌시 탑승자를 보호하는 가장 효과적인 시스템이다. 본 연구에서는 측면 충돌사고 발생시 탑승자의 머리상해지수를 감소시키기 위한 커튼 에어백의 최적설계를 수행하였다. 충돌 시뮬레이션을 바탕으로 직교배열표와 일원표, 그리고 반응표면법을 순차적으로 적용하고 각각의 결과에 대하여 확인실험으로 검증하여 커튼 에어백의 최적설계를 수행하였다.

유전알고리듬을 이용한 측면 에어백 전개 알고리듬의 최적화 (Optimization of Side Airbag Release Algorithm by Genetic Algorithm)

  • 김권희;홍철기
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.45-54
    • /
    • 1998
  • For proper release of side airbags, the onset of crash should be detected first. After crash detection, the algorithm has to make a decision whether the side airbag deployment is necessary. If the deployment is necessary, proper timing has to be provided for the maximum protection of driver or passenger. The side airbag release algorithm should be robust against the statistical deviations which are inherent to experimental crash test data. Deterministic optimization algorithms cannot be used for the side aribag release algorithm since the objective function cannot be expressed in a closed form. From this background, genetic algorithm has been used for the optimization. The optimization requires moderate amount of computation and gives satisfactory results.

  • PDF

새로운 미국 측면 신차안전도평가 결과에 대한 통계적 분석 (Statistical Review for New USNCAP Side Crash Test Results)

  • 범현균
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.104-113
    • /
    • 2013
  • New USNCAP has been carried out by NHTSA including front and side crash from MY2011. In this paper, test results for USNCAP Side crash were reviewed by statistical analysis. This review focused on side crash test results to investigate the effect of changes from new USNCAP side crash test protocol among 30 passenger cars. These results were summarized as followings. Total number of 5 star vehicles on the front seat dummy (16 vehicles, 53.3%) was slightly smaller than the rear seat's (17 vehicles, 56.7%) in MDB test. For the ES-2re dummy, chest injury, ie maximum rib deflection contributed to 66% in the mean value of $P_{joint}$. Pelvis injury was highly dependent upon performance up to 87% in the SID-IIs dummy cited on the rear seat in average $P_{joint}$. For Pole test, pelvis injury made contribution to the average performance to 83%. For standard deviation, it showed the largest value in the same body region as the mean value for each dummy. Overall front seat performance showed 14 vehicles, 44.6% with 5 star vehicles less than each MDB or Pole test result. This result showed that performances in MDB test were different pattern to Pole test on driver position. Number of 5star vehicles for overall side NCAP performance are 18 passenger cars (60%). Curtain airbag and driver thorax airbag were equipped in all test vehicles. One vehicle is equipped with thorax airbag in the rear seat. Results from two side tests considered as reliability problem, ie the cause for large standard deviation in side crash test. Consequently, the countermeasure for new USNCAP side crash test is essential to design the effective side structures for side collision and to control well dummy kinematics with curtain and thorax airbag in order to reduce chest and pelvis injuries.

다구찌법을 이용한 운전석 에어백의 강건설계 (Robust Design of a Driver-Side Airbag Using the Taguchi Method)

  • 이권희;주원식
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.131-138
    • /
    • 2004
  • In the proto design stage of a new car, the performances of an occupant protection system can be evaluated by CAE even though the real test should be carried out. The number of the real test is reduced by the exact predictions followed by the appropriate design recommendation. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters. That often leads to inconsistency between test and CAE. In this research, the robust design of a protection system such as airbag and load limiter is suggested considering the frontal crash. The parameter design scheme of the Taguchi method is introduced to obtain the robust design of arbitrary airbag and load limiter. It is performed based on the frontal crash test condition of US-NCAP with an arbitrary passenger car. The variances of the performances such as HIC, chest acceleration and probability of combined injury are calculated by the outer array and the Taylor series expansion. Through the analysis of the Taguchi method, the robust optimum is determined.

Hard IP Invisible PAB 의 밀링타입 Tear Seam 해석 방안 연구 (A Study on Opening Analysis of Milling type Tear Seam of Hard IP Invisible PAB Door)

  • 최요한;이강욱;안병재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.464-468
    • /
    • 2008
  • In most of the passenger side airbag door in hard type IP today is designed with invisible tear-seam line. In order to design the tear-seam invisible, the tear-seam must be designed with required RWT (residual wall thickness) that is just thick enough to be broken by the PAB pressure on deployment and not by other surrounding impact forces. Hence, keeping the right optimum opening force is very important, and finding the right RWT became the key in designing the tear-seam. The study conducted in this paper describes the search for the optimum RWT around the tear-seam by using finite element method and the optimum RWT is suggested for milling type tear-seam having V-shape cross-section.

  • PDF

고속 측면 충돌 감지 알고리즘의 개발 (Development of Fast Side-impact Sensing Algorithm)

  • 박서욱;김현태
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF