• Title/Summary/Keyword: Passenger circulation system

Search Result 8, Processing Time 0.023 seconds

A Study on the Passenger Circulation system of the Airport Passenger Terminal (공항 여객터미널 여객동선체계에 관한 연구)

  • Park, Chung-Keun
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.260-268
    • /
    • 2010
  • At a passenger terminal which is a core facility of a large-scale airport, users are not easy to recognize its space and to approach each facility by composition of large-scale space not recognized at a glance and arrangement of complicated functional space. Such a passenger terminal should be designed by putting a focus on functionality, safety and convenience since diverse passengers use it. At a passenger terminal, a lot of passengers' circulation followed by diverse purpose appear. Therefore, it needs a lot of functional space and space to satisfy passengers' demands. When circulation is planed, it should be designed by a systematic standard. The study was carried out on the basis of international airports, considering features and functions of airport circulation system. In kind of circulation in passenger terminal of an airport, there are user's circulation (passenger's circulation, employee's circulation and service circulation) and baggage circulation. The study examined passenger's circulation which was a major circulation of passenger terminal out of user's circulation. The study examined elements which had an effect on circulation system at a large-scale airport passenger terminal and basic data for an efficient circulation system standard of passenger terminal through case analysis of passenger terminal circulation systems at international airports.

A Study on the Baggage Allocation Method of Passenger-Baggage Hybrid Train (여객-화물 복합열차의 화물 배치방법에 관한 연구)

  • Choi, Yong Hoon;Shin, Sang Hoon;Han, Gee Pyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3426-3433
    • /
    • 2015
  • Three baggage allocation methods of passenger-baggage hybrid train in restricted railway transportation capacity including round conveyor system, vertical circulation system, and horizontal circulation system are presented. Loading/Unloading time is calculated based on the volume transported from Busan to Seoul via Daegu, Daejeon, and Osong with the parcel company P's logistics data. The horizontal circulation system shows less baggage volume capacity to be allocated and the maximum loading/unloading time with 434 secs. The vertical circulation system presents more loading time, but it shows best result with 408 secs. Loading/Unloading times are compared for each system and useful method is presented to improve transportation efficiency of the train.

Preliminary Design of a Urban Transit Passenger Guidance System Using Congestion Management Model (혼잡관리 모형을 이용한 도시철도 이용객 동선유도시스템 기본설계)

  • Kim, Kwang-Mo;Park, Hee-Won;Kim, Jin-Ho;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3610-3618
    • /
    • 2015
  • The congestion of railway vehicle and station shows up to 220%. Especially, transfer resistance of passenger increase rapidly by the collision of circulation. So increment of travel time, occurrence of safety accidents act as a factor that inhibits the utilization of urban railway station. In this paper, to improve traveling speed and comfort of urban rail passengers, urban transit passenger guidance system using congestion management model is proposed. The congestion management model that can mitigate a recurring/non-recurring congestion is constructed and the preliminary design of the system (middleware system, control system, guidance drive system) is carried out. Passenger Guidance System is configured by step for changing the external data into a form usable by the algorithm, step to perform the congestion management algorithm using the real-time data and historical data, step to control device based on the value that is calculated by congestion management algorithm, step to drive the device based on the information in the control system and circulation guidance devices. In the future, detail design will be performed based on the preliminary design. A prototype of the various devices according to the station structures and locations will be made. The control module of guidance device will be developed.

Carbon dioxide (CO2) concentrations and activated carbon fiber filters in passenger vehicles in urban areas of Jeonju, Korea

  • Kim, Hong Gun;Yu, Yunhua;Yang, Xiaoping;Ryu, Seung Kon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.74-80
    • /
    • 2018
  • The South Korean Ministry of the Environment has revised the laws relating to the management of interior air quality for multiple use facilities, and recommends maintaining carbon dioxide ($CO_2$) concentration in passenger vehicles below 1000 ppm during operation in urban areas of large cities. However, the interior $CO_2$ concentration of passenger vehicles can rapidly increase and exceed 5000 ppm within 30 min, as observed when two passengers are traveling in urban areas of the South Korean city of Jeonju with the air conditioner blower turned off and the actuator mode set to internal circulation mode. With four passengers, $CO_2$ concentration can reach up to 6000 ppm within 10 min. To counter this, when the actuator is set to external mode, $CO_2$ concentration can be maintained below 1000 ppm, even after a long period of running time. As part of the air conditioning system, alkali-treated activated carbon fiber filters are considered to be far superior to the commercial non-woven filters or combination filters currently commonly in use.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A Study on Characteristic Analysis of Auxiliary Power Supply for Railway Vehicle (철도차량 보조전원장치 특성 분석에 관한 연구)

  • Han, Young-Jae;Han, Seong-Ho;Lee, Tae-Young;Lee, Su-Gil;Lee, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.177-181
    • /
    • 2017
  • Auxiliary power supply for railway vehicle is a equipment that focuses on the service of passengers in a vehicle. It supplies power to controllers used in heating and cooling devices, fluorescent lamps, batteries and many other electrical equipments. Most of the auxiliary power supply for railway vehicle are mainly used for the round trips and circulation routes within the metropolitan area and have a capacity of 170~200 kVA. In this study, we developed the auxiliary power supply capacity to 240kVA for 200km/h class. As such, the auxiliary power supply is an important device for securing the reliability and safety of the railway vehicle and improving the passenger convenience, so the performance verification of the performance must be ensured. In this paper, 240kVA auxiliary power supply is developed. Also, performance of the auxiliary power supply manufactured through the analysis of various characteristics related to the auxiliary power supply was confirmed while operating the actual line.

Low Frequency Characteristic of Seoul Subway Noise (서울지하철의 저주파소음 특성)

  • Jung, Sung-Soo;Shin, Su-Hyun;Kim, Ho-Chul;Lee, Woo-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1193-1197
    • /
    • 2005
  • The low frequency noise below 200 Hz, including inaudible infra-sound, is known to affect human physiology ; circulation, respiration, nerve, endocrine, etc. Legislation has been introduced in several countries regarding evaluation guideline and measurement method of low frequency noise. In this work, low frequency characteristics of the Seoul subway transportation system was investigated in terms of the noise level and spectrum in the interior of running passenger car and the subway station. The interior sound pressure level of the passenger car was between 60 and 105 dB in the frequency range of $1{\sim}200\;Hz$ and varied with car speed. The marked sound pressure level peak at 8 Hz, infra-sound, observed for the most of Lines is shown to correspond to the resonance frequency of passenger car. The level of station platform noise was lower than the interior noise of running car because of the lower speed at arriving/departure. The results indicated that the interior noise level of running passenger car was inside the oppressive feeling region, proposed by Ochiai, in the frequency range of $20{\sim}80\;Hz$ which makes a little concern.

How to enhance the security and operation of Self Bag Drop systems (SBD(Self Bag Drop) Systems의 보안 및 운영 개선 방안에 대한 연구)

  • Kim, Ha-na;Kwon, Pilje;Lee, Kang-seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.3
    • /
    • pp.55-65
    • /
    • 2018
  • The SBD systems have made it possible that all boarding procedures are completed by passengers. With the SBD, air tickets can be issued and baggage can be consigned without the help of airline officers. This way, the SBD can improve the passenger circulation speed as well as decrease the time for passengers to wait for check-in, which is connected to the reduction of airlines' operaitonal costs. However, given that the SBD is a new technology, it has potentials to be used as a tool for air terrorism. This study purposes to determine methods to enhance the security and operation of SBD systems. With the aim, this paper investigated the existing literature on SBDs, self-check-in, airport security, air terrorism, risk management, aviation accidents, and information security. In order to compile real-time information about the SBD operations, twelve airports in North America, Europe, and Asia were analyzed based on existing studies on international SBD trends.