• Title/Summary/Keyword: Passenger Model

Search Result 668, Processing Time 0.031 seconds

A Column Generation Approach to Line Planning in Rail Freight Transportation (화물열차 노선계획 작성을 위한 열 생성 기반 최적화 모형 연구)

  • Park, Bum-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.185-192
    • /
    • 2012
  • Line planning is to determine the frequency of trains on each line to satisfy origin-destination demand while minimizing total operation cost. However, different from the line planning in passenger transportation, it is more important at which intermediate stations each train should be stopped and shunted because the freight car handling works like drop-off or(and) pick-up can incur much time and high cost so that the delay deteriorates the quality of rail freight transportation service. We present an optimization model for constructing line plan in rail freight transportation to simultaneously minimize the train operation cost and total transportation time of freights. And we suggest a column generation approach for our problem, which can solve the real network instances in reasonable computation times.

Reduction of Flow-Induced Noise in an Expansion Muffler with Lids (삽입관이 있는 확장형 소음기에서의 기류음 감소)

  • Kang, Woong;Kim, Hyung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within a compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation is associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in a turbocharger system. In this study, a expansion muffler with lids is devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler are investigated which are related to the unsteadiness of turbulence and pressure in the turbocharger system. A transfer matrix method is used to analyze the transmission loss of the muffler. A simple expansion muffler with lids is proposed for the reduction of high frequency component noise. Turbulence simulation is carried out by a standard k - ${\varepsilon}$ model. An optimal design condition of the muffler is obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise is achieved at the optimal design of the muffler as compared with the conventional muffler.

Analysis of Travel Behavior of Rail Passenger by Activity-based Approach: The Case of Seoul-Busan Line (활동기반 접근방법을 고려한 철도 이용 승객의 통행행태 분석: 경부선을 중심으로)

  • Eom, Jin-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.302-308
    • /
    • 2009
  • This paper presents a comprehensive analysis of intercity rail passengers' and travel patterns based on the 2001 Seoul-Busan rail passengers' Travel Survey. Results representing personal characteristics such as age and income seem to affect on destination the income was not seen to be a critical effect on destination choice. The variables such as travel time, transfer status, and date for travel seem to be and recreation activity. However, the destination choice would be relationship between Seoul and all four destination cities. The insights gained of an activity-based rail travel demand model.

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

Automobile Power Seat Using Motor Current Profile Control Technology (모터 전류 형상 제어 기술을 적용한 차량용 전동 시트)

  • Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.224-229
    • /
    • 2019
  • Seat of automobile is required to support the comfort to driver and passenger during the driving. The control method of the seat position is changed from manual type to power type, which means using the motor to increase the comfort of the driver. By using the motor, several problems, such as vibration, noise, and over-current, appeared. These problems can be reduced through the control of seat motor. In this study, a control technology of four control variables, which determine profile of the input voltage applying to the seat motor, is proposed to generate the current profile having soft-start and soft-stop. The current flowing through the coil by input voltage is described by mathematical modeling of power seat. It is confirmed that optimized current profile having soft-start and soft-stop can be generated from simulation using the mathematical model.

A Study on the Life Cycle Establishment and Improvement of Main Parts for Electric Locomotive (전기기관차 주요부품의 수명주기 설정 및 개선방안에 관한 연구)

  • Lee, Doek Koo;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • The 8200-unit electric locomotive, which is a high-efficiency multipurpose electric locomotive, is a German model, namely BR152 series ES64F, and it is manufactured to suit the operating conditions in Korea. Since 2003, 83 locomotives have been introduced in Korea, and they have been operating in the general railway sector for both passenger and freight transport. Although more than 15 years have passed since their first introduction, owing to the characteristics of vehicles introduced overseas, responding promptly to failures has been difficult owing to problems related to factors such as transfer of technology and procurement of parts for maintenance. Furthermore, there have been difficulties in operating the locomotives on the basis of the manufacturer-recommended time-between-overhaul (TBO) cycle. Therefore, a new TBO should be determined. To support the development of a reliability-based maintenance system, this study conducted a reliability and TBO analysis by using failure data obtained from KOVIS, and future management measures are presented.

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

Research and Calculate 29/34-Seat Passenger Cars to Ensure Safety for Occupants in the Event of a Collision According to ECE R94 Standards

  • Vu Hoang, Phuong;Nguyen Cong, Thanh;Nguyen Quoc, Tuan;Ta Hong Thanh, Tu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.140-144
    • /
    • 2023
  • In recent years, there are so many serious crashes involving coaches, especially the frontal collision occupies 40% of the front of the vehicle, Frontal collisions account for 100% of the front of the vehicle affecting the driver and side-impact collisions that injure the person in the vehicle. Therefore, the research into improving and optimizing the structure is necessary for risk of injury for passengers in frontal accidents. In this paper, we have designed a Shock absorber that can absorb collision energy. Research using HYPERMESH software. to build the finite element model and calculate the meshing to suit the mesh size of 5mm. apply LS-DYNA software to calculate structural strength. In the study, for a vehicle to collide with a hard obstacle occupying 100% of the head of the vehicle. Then, the experimental design method, Minitab is used for find the structural parameters in the design. Improvement results showed that the acceleration of the impact on passengers and the driver is decreased by 55,17%. The mass of texture improvements is reduced by 11%, according to the requirements of European Standards ECE R94.

Analysis on the Driving Safety and Investment Effect using Severity Model of Fatal Traffic Accidents (대형교통사고 심각도 모형에 의한 주행안전성 및 투자효과 분석)

  • Lim, Chang-Sik;Choi, Yang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.103-114
    • /
    • 2011
  • In this study, we discuss a fatal accident severity model obtained from the analysis of 112 crash sites collected since 2000, and the resulting relationship between fatal accidents and roadway geometry design. From the 720 times computer simulations for improving driving safety, we then reached the following conclusions:. First, the result of cross and frequency-analyses on the car accident sites showed that 43.7% of the accidents occurred on the curved roads, 60.7% on the vertical curve section, 57.2% on the roadways with radius of curvature of 0 to 24m, 83.9% on the roads with superelevation of 0.1 to 2.0% and 49.1% on the one-way 2-lane roads; vehicle types involved are passenger vehicles (33.0%), trucks (20.5%) and buses (14.3%) in order of frequency. The results also show that the superelevation is the most influencing factor for the fatal accidents. Second, employing the Ordered Probit Model (OPM), we developed a severity model for fatal accidents being a function of on various road conditions so as to the damages can be predicted. The proposed model possibly assists the practitioners to predict dangerous roadway segments, and to take appropriate measures in advance. Third, computer simulation runs show that providing adequate superelevation on the segment where a fatal accident occurred could reduce similar fatal accidents by at least 85%. This result indicates that the regulations specified in the Rule for Road Structure and Facility Standard (description and guidelines) should be enhanced to include more specific requirement for providing the superelevation.

Multinomial Logit Modeling: Focus on Regional Rail Trips (다항로짓모형을 이용한 지역간 철도통행 연구)

  • Kim, Gyeong-Tae;Lee, Jin-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.1 s.94
    • /
    • pp.109-119
    • /
    • 2007
  • Increasingly, the emphasis in regional Passenger rail Planning is finding ways to more efficiently use existing facilities, with particular attention being Paid to Policies designed to spread Peak-Period travel demand more evenly throughout the week with consideration of train classification. In this context the individual's choice of time to travel is of crucial significance. This paper investigates the use of multinomial logit analysis to model ridership by rail classification using data collected for travel from Seoul to Busan during the one week in October 2004. The Particular model form that was successfully calibrated was the multinomial logit (MNL) model : it describes the choice mechanism that will Permit rail systems and operations to be planned on a more reliable basis. The assumption of independently and identically distributed(IID) error terms in the MNL model leads to its infamous independence from irrelevant alternatives (IIA) property. Relaxation of the IID assumption has been undertaken along a number or isolated dimensions leading to the development of the MNL model. For business and related rail travel patterns, the most important variables of choice were time and frequency to the chosen destination. The calibrated model showed high agreement between observed and Predicted market shares. The model is expected to be of use to railroad authorities in Planning and determining business strategies in the Increasingly competitive environment or regional rail transport.