• 제목/요약/키워드: Parts for Semiconductor

Search Result 193, Processing Time 0.024 seconds

A Study on Cleaning Processes for Ti/TiN Scales on Semiconductor Equipment Parts (반도체 장비 부품의 Ti/TiN 흡착물 세정 공정 연구)

  • 유정주;배규식
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.11-15
    • /
    • 2004
  • Scales, accumulated on some parts of semiconductor equipments such as sputters and CVD during the device fabrication processes, often lower the lifetime of the equipments and production yields. Thus, many equipment parts have be cleaned regularly. In this study, an attempt to establish an effective process to remove scales on the sidewall of collimators located inside the chamber of the sputter was made. The EDX analysis revealed that the scales were composed of Ti and TiN with the columnar structure. Through the trial-and-error experiments, it was found that the etching in the $HNO_3$:$H_2SO_4$:$H_2O$=4:2:4 solution for 5.5 hrs at $67^{\circ}C$, after the oxide removal in the HF solution, and the heat-treatment at $700^{\circ}C$ for 1 min., was the most effective process for the scale removal.

  • PDF

A Study of Mechanical Machining for Silicon Upper Electrode (실리콘 상부 전극의 기계적 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Upper electrode is one of core parts using plasma etching process at semiconductor. The purpose of this study is to analyze effects of cutting conditions for mechanical machining of silicon upper electrode. For this research, surface roughness of machined workpiece and depth of damage inside of silicon electrode are experimented and analyzed and different values of feed rate and depth of cut are applied for the experiments. From these experiments, it is verified that the surface roughness and internal damaged layer get worse according to take more fast feed rate. In conclusion, cutting condition is very important factor for machining. Results of this study can use to develop various parts which are made from single crystal silicon and affect various benefits to the semiconductor industry for better productivity.

A Study on Axiomatic Design for Ribbed - Injection-Molded Parts (리브를 가진 사출제품의 공리 설계 연구)

  • Huh, Yong-Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.7-11
    • /
    • 2007
  • The design and manufacture of injection-molded parts with desired properties is a costly process dominated by empiricism, Including the repeated modification of actual tooling. The objective of this study is to obtain the good design of injection-molded polymeric parts using axiomatic design approach.

  • PDF

A Study of Machining Optimization of Parts for Semiconductor Plasma Etcher (반도체 플라즈마 식각 장치의 부품 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • Plasma etching process employs high density plasma to create surface chemistry and physical reactions, by which to remove material. Plasma chamber includes silicon-based materials such as a focus ring and gas distribution plate. Focus ring needs to be replaced after a short period. For this reason, there is a need to find materials resistant to erosion by plasma. The developed chemical vapor deposition processing to produce silicon carbide parts with high purity has also supported its widespread use in the plasma etch process. Silicon carbide maintains mechanical strength at high temperature, it have been use to chamber parts for plasma. Recently, besides the structural aspects of silicon carbide, its electrical conductivity and possibly its enhanced life time under high density plasma with less generation of contamination particles are drawing attention for use in applications such as upper electrode or focus rings, which have been made of silicon for a long time. However, especially for high purity silicon carbide focus ring, which has usually been made by the chemical vapor deposition method, there has been no study about quality improvement. The goal of this study is to reduce surface roughness and depth of damage by diamond tool grit size and tool dressing of diamond tools for precise dimensional assurance of focus rings.

Implementation of an E-BOM Copy Method for an Order-specific Semiconductor Equipment (주문 생산형 반도체 장비를 위한 E-BOM 복제 방법의 구현)

  • Park, Dong-Seok;Yang, Jeong-Sam;You, Ki-Hyoun;Park, Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.273-285
    • /
    • 2008
  • In this paper we propose an engineering bill of materials (E-BOM) copy method that can be utilized to manage the product information for each equipment during building a product lifecycle management (PLM) system in the order-specific semiconductor equipment manufacturer. The previous works studied on an E-BOM creation and management method for the mass manufacturing and production. The method is difficult to apply to an environment in which many engineering changes occur and the different specification to each equipment is required such as semiconductor equipments and facilities adopting built-to-order instead of built for inventory. Moreover the method is known to be the major drawback to deteriorate the design efficiency. Our E-BOM copy method enables users efficiently to manage the specification of a product and shortens the product development cycle. To implement the E-BOM copy method in the PLM environment, we developed the E-BOM copy system that automatically generates new parts and their numbers according to the numbering rule while copying the E-BOM from existing semiconductor equipments and then can apply the parts for reuse to new semiconductor equipments. This system can duplicate not only 3D CAD data but also technical documents.

Analysis of Korean Import and Export in the Semiconductor Industry: A Global Supply Chain Perspective

  • Shin, Soo-Yong;Shin, Sung-Ho
    • Journal of Korea Trade
    • /
    • v.25 no.6
    • /
    • pp.78-104
    • /
    • 2021
  • Purpose - Semiconductors are a significant export item for Korea that is expected to continue to contribute significantly to the Korean economy in the future. Thus, the semiconductor industry is a critical component in the 4th Industrial Revolution and is expected to continue growing as the non-face-to-face economy expands as a result of the COVID-19 pandemic. In this context, this paper aims to empirically investigate how semiconductors are imported and exported in Korea from a global supply chain perspective by analysing import and export data at the micro-level. Design/methodology - This study conducts a multifaceted analysis of the global supply chain for semiconductors and related equipment in Korea by examining semiconductor imports and exports by semiconductor type, year, target country, mode of transportation, airport/port, and domestic region, using import/export micro-data. The visualisation, flow analysis, and Bayesian Network methodologies were used to compensate for the limitations of each method. Findings - Korea is a major exporter of semiconductor memory and has the world's highest competitiveness but is relatively weak in the field of system semiconductors. The trade deficit in 'semiconductor equipment and parts' is clearly growing. As a result, continued investment in 'system semiconductors' and 'semiconductor equipment and parts' technology development is necessary to boost exports and ensure a stable supply chain. Originality/value - Few papers on semiconductor trade in Korea have been published from the perspective of the global supply chain or value chain. This study contributes to the literature in this area by focusing on import and export data for the global supply chain of the Korean semiconductor industry using a variety of approaches. It is our hope that the insights gained from this study will aid in the advancement of SCM research.

Development of Seam Seal Welding System for Semiconductor Package (반도체 Package용 Seam Seal Welding System 개발)

  • 이우영;진경복;오장환;김경수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.21-24
    • /
    • 2003
  • Seam seal welding on the semiconductor package is a process for sealing the packages of semi-conductors, crystal parts, saw filters and oscillators with lid plate by seam welding. This paper presents the development process of automatic seam seal welding system. In this process, the process algorithm, high precision welding current control, design of welding head, high speed and high precision feeding mechanism and user interface process control program technologies are included.

  • PDF

A Study on Vision-based Calibration Method for Bin Picking Robots for Semiconductor Automation (반도체 자동화를 위한 빈피킹 로봇의 비전 기반 캘리브레이션 방법에 관한 연구)

  • Kyo Mun Ku;Ki Hyun Kim;Hyo Yung Kim;Jae Hong Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.72-77
    • /
    • 2023
  • In many manufacturing settings, including the semiconductor industry, products are completed by producing and assembling various components. Sorting out from randomly mixed parts and classification operations takes a lot of time and labor. Recently, many efforts have been made to select and assemble correct parts from mixed parts using robots. Automating the sorting and classification of randomly mixed components is difficult since various objects and the positions and attitudes of robots and cameras in 3D space need to be known. Previously, only objects in specific positions were grasped by robots or people sorting items directly. To enable robots to pick up random objects in 3D space, bin picking technology is required. To realize bin picking technology, it is essential to understand the coordinate system information between the robot, the grasping target object, and the camera. Calibration work to understand the coordinate system information between them is necessary to grasp the object recognized by the camera. It is difficult to restore the depth value of 2D images when 3D restoration is performed, which is necessary for bin picking technology. In this paper, we propose to use depth information of RGB-D camera for Z value in rotation and movement conversion used in calibration. Proceed with camera calibration for accurate coordinate system conversion of objects in 2D images, and proceed with calibration of robot and camera. We proved the effectiveness of the proposed method through accuracy evaluations for camera calibration and calibration between robots and cameras.

  • PDF

반도체 장비 부품의 Ti/TiN 흡착물 세정 공정 연구

  • 유정주;배규식
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.92-96
    • /
    • 2004
  • Scales, accumulated on semiconductor equipment parts during device fabrication processes, often lower equipment lifetime and production yields. Thus, many equipments parts have be cleaned regularly. In this study, an attempt to establish an effective process for the removal of scales on the sidewall of collimators in the chamber of sputter is made. The EDX analysis revealed that the scales are composed of Ti and TiN with the colummar structure. It was found that the heat-treatment at 700 for 1 min. after the oxide removal in the HF solution, and then etching in the HNO3 : H2SO4 : H2O =4:2:4 solution for 5.5 hrs at 67 was the most effective process for the scale removal.

  • PDF

Development of a Transducer for Cursor Control by use of Semiconductor Strain Gage (반도체 게이지를 이용한 360 방향의 트랜스듀서 개발)

  • 김민석;송후근;이정태;김성배;이명훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1430-1433
    • /
    • 2003
  • Transducers, which are incorporated in control devices for fixed wing aircraft, land vehicles. and weapon systems were designed and manufactured by use of semiconductor strain gages. These transducers consist of three parts; flange mounts, sensing rods, and semiconductor strain gages. In this investigation, we designed cylindrical sensing rods with high sensitivity and developed installation procedures of semiconductor strain gages. The semiconductor strain gage has hish gage factor such that it can produce high resistance change in spite of low strain, but it is so small and fragile that one should handle carefully and sophisticated installation method is needed for good performances. The prototype transducers are manufactured, and then tested about three important factors: sensitivity, linearity, and hysteresis. We got results or 0.084 V/N sensitivity, 0.2% nonlinearity, and 0.5% hysteresis.

  • PDF