• Title/Summary/Keyword: Partitioning

Search Result 1,581, Processing Time 0.028 seconds

Effect of chemical and physical structure on partitioning behavior of representative printing ink solvents and various food ingredients (식품 성분과 식품 포장용 인쇄 잉크 용매의 화학적 구조가 분배작용에 미치는 영향)

  • An, Duek-Jun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • Migration behavior of selected solvents and food samples showed differences of the chemical structures and polarities, the food samples which have similar polar expresses more higher affinity than different polar degrees. Water which is polar has a highest partitioning coefficient values on polar isopropanol, and oil which is nonpolar has highest partitioning value on non-polar toluene. The increasing order of partitioning values was accord with increasing water contents in food samples. It is showed that the wheat flour with 13.2% moisture content has the highest partitioning coefficient values on the isopropanol with -OH. Kp value of sugar showed remarkable lower partitioning coefficient values than other food samples due to high degree crystallinity. This phenomenon can be predictable with ${\delta}$ values, because order of partitioning coefficient values which comes out through the experiment and the sequence of Hildebrand solubility parameter value difference between food sample and printing ink solvent correspond almost. This Hildebrand solubility parameter value can be easily applied to the food package industry because the effect of food-safety can be considered without passing through complicated steps by using this method.

  • PDF

Quantification of Diesel in Soils using the Partitioning Tracer Method with Two-dimensional Soil Box (분배성 추적자 기법을 이용한 디젤 오염 토양의 정량적 오염도 평가에 관한 2차원 토조 실험 연구)

  • Rhee, Sung-Su;Lee, Gwang-Hun;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • The partitioning tracer method is to estimate the residual saturation of nonaqueous phase liquid (NAPL) in soils by analyzing tracer's retardation induced by the reversible partitioning of tracer with NAPL. This study is to estimate the residual diesel saturation in soils using the partitioning tracer method. Two-dimensional soil box was used to represent the 2-dimensional flows of groundwater and tracer solution in the saturated aquifer, and the soil box was filled with soil and then saturated with water. The residual diesel saturation was induced in saturated soil, and the partitioning tracer method was applied. The results from batch-partitioning experiment indicated that the diesel-water partitioning was linear with respect to tracer's concentration, and the partition coefficient of tracer between diesel and water was measured by their linearities. The groundwater flow in the saturated aquifer was simulated in the 2-dimensional soil box, and the residual diesel contamination was visually identified. The results from the partitioning tracer method with or without diesel in soils confirmed that 4-methyl-2-pentanol, 2-ethyl-1-butanol and 1-hexanol, can be used as a detecting method for diesel contamination. By the accuracies of estimations for diesel contamination using the partitioning tracer method, 2-ethyl-1- butanol showed the highest accuracy with 83%.

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

An Integer Programming-based Local Search for the Set Partitioning Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.21-29
    • /
    • 2015
  • The set partitioning problem is a well-known NP-hard combinatorial optimization problem, and it is formulated as an integer programming model. This paper proposes an Integer Programming-based Local Search for solving the set partitioning problem. The key point is to solve the set partitioning problem as the set covering problem. First, an initial solution is generated by a simple heuristic for the set covering problem, and then the solution is set as the current solution. Next, the following process is repeated. The original set covering problem is reduced based on the current solution, and the reduced problem is solved by Integer Programming which includes a specific element in the objective function to derive the solution for the set partitioning problem. Experimental results on a set of OR-Library instances show that the proposed algorithm outperforms pure integer programming as well as the existing heuristic algorithms both in solution quality and time.

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.

INTEGRAL METHODS OF FUZZY AHP AND DSM FOR EVALUATION IN PARTITIONING DESIGN TEAMS

  • Lou Y. Liang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1036-1046
    • /
    • 2009
  • Many construction activities are related because they share the information of working methods and resources. Generally, the design information for coupled activities needs to be constantly collaborated in the different teams. To achieve the improvement in team collaboration, it is necessary to identify the relative coupled activities in the design teams. The activity and work partitioning arrangements are also required to accommodate the appropriate team members. This paper presents an integral method to be an evaluation in improving the collaboration for teams partitioning. A model, Team Partitioning Method (TPM) was developed to clarify the relationships between activities in a team. The results show the applicability of TPM model in team partitioning for design collaboration.

  • PDF

Performance Comparison between Hardware & Software Cache Partitioning Techniques (하드웨어 캐시 파티셔닝과 소프트웨어 캐시 파티셔닝의 성능 비교)

  • Park, JiWoong;Yeom, HeonYoung;Eom, Hyeonsang
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.177-182
    • /
    • 2015
  • The era of multi-core processors has begun since the limit of the clock speed has been reached. These days, multi-core technology is used not only in desktops, servers, and table PCs, but also in smartphones. In this architecture, there is always interference between processes, because of the sharing of system resources. To address this problem, cache partitioning is used, which can be roughly divided into two types: software and hardware cache partitioning. When it comes to dynamic cache partitioning, hardware cache partitioning is superior to software cache partitioning, because it needs no page copy. In this paper, we compare the effectiveness of hardware and software cache partitioning on the AMD Opteron 6282 SE, which is the only commodity processor providing hardware cache partitioning, to see whether this technique can be effectively deployed in dynamic environments.

Performance Comparison of Task Partitioning Methods in MEC System (MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.139-146
    • /
    • 2022
  • With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.

Automatic decomposition of unstructured meshes employing genetic algorithms for parallel FEM computations

  • Rama Mohan Rao, A.;Appa Rao, T.V.S.R.;Dattaguru, B.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.625-647
    • /
    • 2002
  • Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

Enhanced Partitioning of Proteins in Metal-Affinity Aqueous Two-Phase Systems (금속 친화성 액 이상분계 시스템에서 단백질의 분배 향상)

  • Chung, Bong-Hyun;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.336-341
    • /
    • 1993
  • In metal-affinify aqueous two-phase systems, protein partitioning is affected by a variety of parameters such as pH, the number of surface-accessible histidines, and the amount and partition coefficient of metallated polythylene glyco(PEG) ligand. To enhance partitioning of proteins with surface-accessible histidines, we have synthesized and used a (Cu(II)-ininodiacetic acid)$_2$-PEG20,000($Cu(II)_2IDA_2$-PEG20,000) as well as Cu(II)IDA-PEG5,000 as an affinity ligand. The partition coefficient of $Cu(II)_2-IDA_2$-PEG20,000 in a PEG5,000/dextran two-phase system was 30.1, which corresponded to a 3.8-fold increase over that of Cu(II)IDA-PEG5,000. The partitioning experiments were performed on four proteins, horse cytochrome c, S. cerevisiae cytochrome c, horse myoglobin, and sheep myoglobin. Partitioning of proteins which convey surface-accessible histidines was enhanced dramatically by the addition of $Cu(II)_2IDA_2$-PEG20,000 ligand. These results demonstrate that enhanced partitioning of metal-binding proteins in an aqueous two -phase system can by achieved by using an appropriate metallated PEG ligand.

  • PDF