• Title/Summary/Keyword: Particulate matter (PM)

Search Result 832, Processing Time 0.026 seconds

Purpurogallin Protects Keratinocytes from Damage and Apoptosis Induced by Ultraviolet B Radiation and Particulate Matter 2.5

  • Zhen, Ao Xuan;Piao, Mei Jing;Hyun, Yu Jae;Kang, Kyoung Ah;Ryu, Yea Seong;Cho, Suk Ju;Kang, Hee Kyoung;Koh, Young Sang;Ahn, Mee Jung;Kim, Tae Hoon;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • Purpurogallin, a natural phenol obtained from oak nutgalls, has been shown to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, in addition to ultraviolet B (UVB) radiation that induces cell apoptosis via oxidative stress, particulate matter 2.5 ($PM_{2.5}$) was shown to trigger excessive production of reactive oxygen species. In this study, we observed that UVB radiation and $PM_{2.5}$ severely damaged human HaCaT keratinocytes, disrupting cellular DNA, lipids, and proteins and causing mitochondrial depolarization. Purpurogallin protected HaCaT cells from apoptosis induced by UVB radiation and/or $PM_{2.5}$. Furthermore, purpurogallin effectively modulates the pro-apoptotic and anti-apoptotic proteins under UVB irradiation via caspase signaling pathways. Additionally, purpurogallin reduced apoptosis via MAPK signaling pathways, as demonstrated using MAPK-p38, ERK, and JNK inhibitors. These results indicate that purpurogallin possesses antioxidant effects and protects cells from damage and apoptosis induced by UVB radiation and $PM_{2.5}$.

Particulate Matter from Asian Dust Storms Induces the Expression of Proinflammatory Cytokine in A549 Epithelial Cells (PM10이 A549 Cells에서 전염증성 Cytokine발현에 미치는 영향)

  • Kim, Jung Ho;Jeon, Hyo Keun;Kim, Mi Kyeong;Kyung, Sun Yong;An, Chang Hyeok;Lee, Sang Pyo;Park, Jung Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.6
    • /
    • pp.663-672
    • /
    • 2006
  • Background: $PM_{10}$(Particulate matter with a diameter ($<10{\mu}m$), which is characterized by different environmental conditions, is a complex mixture of organic and inorganic compounds. The Asian dust event caused by meteorological phenomena can also produce unique particulate matter in affected areas. This study investigated the cytokine produced by A549 epithelial cells exposed to particles collected during both the Asian dust pfenomenon and ambient air particles in a non-dusty period. Method: Air samples were collected using a high volume air sampler(Sibata Model HV500F) with an air flow at $500{\ell}/min$ for at least 6 hours. The cytokine messenger RNA(mRNA) was measured using a reverse transcriptase polymerase chain reaction(RT-PCR). The A549 cells were exposed to 10 to $500{\mu}g/m{\ell}$ of a suspension containing $PM_{10}$ for 24 hours. Each was compared with those in the non-exposed control cells. Result: The mRNA levels of interleukin(IL)-$1{\alpha}$, $IL-I{\beta}$, IL-8, and the granulocyte macrophage colony stimulating factor(GM-CSF) increased after veing exposed to $PM_{10}$ in the ambient air particles, compared with those in the non-exposed control cells. The increase in $IL-1{\alpha}$ and IL-8 were dose dependent at a $PM_{10}$ concentration between $100{\mu}g/m{\ell}$ and $500{\mu}g/m{\ell}$. The mRNA level of IL-8 in the A549 epithelial cells was higher during the in the Asian dust period($500{\mu}g/m{\ell}$) than during the non dust period. Conclusion: A549 cells exposed to the $PM_{10}$ collected during the Asian dust period produce more proinflammatory cytokine than during non-dusty period. This cytokine enhances the local inflammatory response in the airways and can also contribute to the systemic component of this inflammatory process.

A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle (전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 2018
  • This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti

Study on the Emission Characteristics of Air Pollutants from Agricultural Area (농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구)

  • Kim, Min-Wook;Kim, Jin-Ho;Kim, Kyeong-Sik;Hong, Sung-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.

Comparisons of the Particle Emission Characteristics Between GDI and MPI Vehicles (GDI와 MPI 자동차의 미세입자 배출특성 비교)

  • Lee, Jongtae;Kim, Kijoon;Kim, Jeongsoo;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.182-187
    • /
    • 2014
  • As the regulations for Particulate Matter (PM) and Particle Number (PN) emissions from Gasoline Direct Injection (GDI) Vehicle stringent recently, a lot of studies have been made on the emission characteristics of PM and PN. In this study, PM and PN emission characteristics were compared to GDI and Multi Port Injection (MPI) Vehicles using the Condensation Particle Counter (CPC) measurement equipment. And driving mode is divided into normal driving mode (CVS-75, NEDC, NIER 6, NIER 9) and a constant speed driving mode (10 km/h, 35 km/h, 80 km/h, 110 km/h) to evaluate the characteristics in the various operating conditions. In the results, most of the driving mode, PM and PN were emitted from GDI Vehicle more than MPI Vehicle. However, in the constant speed mode of 110 km/h, PM and PN from MPI Vehicle were also a lot of emission. It is determined to cause a difficulty in the fuel injection control of the MPI Vehicle.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Spatiotemporal Variations and Possible Sources of Ambient PM10 from 2003 to 2012 in Luzhou, China

  • Ren, Dong;Li, Youping;Zhou, Hong;Yang, Xiaoxia;Li, Xiaoman;Pan, Xuejun;Huang, Bin
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Descriptive statistics methods were used to study the spatiotemporal variations and sources of ambient particulate matter ($PM_{10}$) in Luzhou, China. The analyzed datasets were collected from four national air quality monitoring stations: Jiushi (S1), Xiaoshi (S2), Zhongshan (S3), Lantian (S4) over the period of 2003-2012. This city was subjected serious $PM_{10}$ pollution, and the long-term annual average $PM_{10}$ concentrations varied from 76 to $136{\mu}g/m^3$. The maximum concentration was more than 3-fold of the annual average ($40{\mu}g/m^3$) issued by EPA-China for the ambient air quality. General temporal pattern was characterized by high concentrations in winter and low concentrations in summer, and general spatial gradient was in the reduction order of S2 > S4 > S3 > S1, which were both due to different particulate contributors and special meteorological conditions. The source apportionment indicated that vehicular emissions, road dusts, coal burning and chemical dusts were the major contributors of the identified $PM_{10}$ pollution, and the vehicular emissions and the road wear re-suspended particles dominated the heavy $PM_{10}$ pollution in recent years. Two other potential sources, agricultural and celebration activities could decrease the air quality in a short term. Finally, some corresponding suggestions and measures were provided to improve the air quality.

Effects of Particulate Matters on A549 and RAW 264.7 Cells (대도시의 입자상 물질이 A549와 RAW 264.7 세포에 미치는 영향)

  • Baak, Young-Mann;Kim, Ji-Hong;Kim, Kyoung-Ah;Ro, Chul-Un;Kim, Hyung-Jung;Lim, Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • Objectives : To investigate the effects of particulate matter (PM), a marker of environmental pollution derived from combustion sources, on lung epithelial cells (A549) and macrophage (RAW 264.7). Methods : The production of reactive radicals from lung cells, the lipid peroxidation of cell membrane, and the cytotoxicity of PM were measured using an in vitro model. The results were compared with a control group. Results : The presence of PM significantly increased the production of reactive oxygen species and reactive nitrogen species with time and in a dose dependent pattern and also increased the malondialdehyde concentration in lung epithelial cells. The cytotoxicity of PM was increased with increasing concentration of PM. Conclusions : It has been suggested that urban particulate matter causes an inflammatory reaction in lung tissue through the production of hydroxyl radicals, nitric oxides and numerous cytokines. The causal chemical determinant responsible for these biologic effects are not well understood, but the bioavailable metal in PM seems to determine the tonicity of inhaled PM.

  • PDF