• 제목/요약/키워드: Particulate emissions

검색결과 338건 처리시간 0.023초

화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향 (Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.449-456
    • /
    • 2010
  • HCCI 엔진은 고효율, 저공해를 실현할 수 있는 차세대 내연기관이다. 그러나 HCCI 엔진이 상용화되기 위해서는 몇 가지 문제점들이 해결되어야 한다. 그 중에서 가장 큰 문제점은 과도한 압력 상승률이 노킹을 발생시키기 때문에 운전영역이 제한되는 것이다. 이번 연구의 목적은 HCCI 엔진에서 압력상승률 저감을 위하여 온도 성층화와 농도 성층화 효과를 조사하는 것이다. 그리고 Multi-zone 모델을 이용한 화학반응 수치해석을 통하여 연소 및 배기가스 특성에 미치는 영향을 알아보았다. 수치해석에서 2 단계 열발생을 가지는 DME와 1단계 열발생을 가지는 메탄을 사용하였다.

자동차 미세먼지 배출량 산정의 타당성 분석 (Validity Analysis of the Fine Particle Emission Calculating by Cars)

  • 이임학;김진식;이승재;김신도
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.222-226
    • /
    • 2014
  • 본 연구에서는 도시대기 중 문제시 되는 미세먼지 배출원의 주범으로 추정되는 유류를 사용하는 도로배출원(자동차)의 배출량 산정을 위한 배출계수 및 활동도 적용의 타당성과 미세먼지 제어를 위한 법제도 시행의 타당성에 대하여 분석하고 고찰하는 것을 연구의 목적으로 하였다. 실제 교통량에 근거하여 작성한 본 연구의 자동차 배출량 공간분석 결과와 기존 방법과의 차이가 나타났는데, 대기 미세먼지 농도를 알아보기 위한 대기분산모델링을 수행할 때 현실적이지 않은 배출량을 입력할 경우, 농도분포 결과의 심각한 왜곡을 초래할 수 있기 때문에 자동차 배출 미세먼지 공간분석은 실제 교통량에 근거하여 작성해야 할 것이다. 국립환경과학원방법(2010)에 사용된 자동차 미세먼지 배출계수는 주로 2003~2007년식의 자동차를 대상으로 하였기 때문에 DPF 장착 등의 효과를 반영할 수 없었고, 서울 인근 도로 노선별 자동차 미세먼지 배출량 산정결과 국립환경과학원방법과 본 연구방법의 결과가 상이하게 나타났는데, 승용차 배출량 중 휘발유차 배출량이 디젤차량 배출량과 대등하게 산정되었기 때문에, 현실에 맞는 디젤 및 휘발유 자동차 미세먼지 배출계수 개발이 필요하다.

가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구 (Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG)

  • 이석환;오승묵;강건용;조준호;차경옥
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구 (Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve)

  • 오병걸;이민광;박영섭;이강윤;선우명호;남기훈;조성환
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구 (Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine)

  • 정재우;강정호;김남호;정수진;이호길;강우
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.

EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교 (Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control)

  • 이용규;장재훈;이선엽;오승묵
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

부산지역 지역용도별 해안과 내륙의 PM10 농도 특성 (Characteristics of PM10 concentration at seashore and inland according to land-use in Busan)

  • 전병일
    • 한국습지학회지
    • /
    • 제11권2호
    • /
    • pp.47-54
    • /
    • 2009
  • 본 논문은 부산지역의 지역용도별 PM10(입경 10 ${\mu}m$미만의 크기를 가진 먼지입자) 농도의 특성을 고찰하기 위해 수행되었다. 미세먼지는 배출량, 지형조건 그리고 기상인자에 의해 영향을 받는다. 공업지역의 경우, 내륙인 감전동의 PM10농도는 여름철을 제외한 모든 계절에서 해안인 녹산동보다 높았으며, 1차 peak가 가을철과 겨울철에 명확하게 나타났다. 녹지지역인 경우, 내륙인 대저동의 PM10농도는 해안인 동삼동보다 모든 계절에서 높은 농도를 나타내었다. 상업지역의 경우, 내륙인 전포동에서 primary peak를 나타내는 시각이 계절에 따라 1 시간씩 지연되었으며, 해안인 광복동은 전포동보다 봄철에 높은 농도를 나타내었다. 주거지역의 경우, 내륙인 덕천동과 용수리에서 봄철에 고농도의 PM10(80~90 ${\mu}g/m^3$)이 6시간동안 지속되어 나타났다.

  • PDF

서울시 대기 중 Pinic Acid와 cis-Pinonic Acid의 계절별 농도 변화 (Seasonal Variation of the Concentrations of Pinic Acid and cis-Pinonic Acid in the Atmosphere over Seoul)

  • 전소현;이지이;정창훈;김용표
    • 한국대기환경학회지
    • /
    • 제32권2호
    • /
    • pp.208-215
    • /
    • 2016
  • Pinic acid (PA) and cis-pinonic acid (CPA) in the atmospheric particulate matter with an aerodynamic diameter of less than or equal to a nominal $10{\mu}m$ ($PM_{10}$) were analyzed for the samples collected during the period of April 2010 to April 2011 at Jongro in Seoul. Both pinic acid and cis-pinonic acid showed higher seasonal average concentrations in summer (PA; $18.9ng/m^3$, CPA; $16.0ng/m^3$) than winter (PA; $5.3ng/m^3$, CPA; $5.9ng/m^3$). They displayed a seasonal pattern associated with temperature reflecting the influence on emissions of ${\alpha}-pinene$ and ${\beta}-pinene$ from conifers and their photochemical reaction. These results were confirmed through Pearson correlation coefficient between CPA, PA and $O_3+NO_2$, temperature. CPA was only correlated with n-alkanes ($C_{29}$, $C_{31}$, $C_{33}$) from biogenic source. PA was correlated with n-alkanes ($C_{29}$, $C_{31}$, $C_{33}$), n-alkanoic acid ($C_{20}$, $C_{22}$, $C_{24}$) from biogenic source and n-alkanes ($C_{28}$, $C_{30}$, $C_{32}$), and n-alkanoic acid ($C_{16}$, $C_{18}$) from anthropogenic source. These results showed that the formation of PA and CPA from ${\alpha}-pinene$ and ${\beta}-pinene$ is related to organic compounds from biogenic source. And it is possible for PA to be effected by organic compounds from anthropogenic source.

공동주택에서 취침 시 실내공기환경 평가에 관한 연구 (A Study on the Assessment of the IAQ during Nightime)

  • 김동규;김삼열;김세환
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.93-98
    • /
    • 2007
  • Effort has been performed for latest 20 years to improve resident's comfort and indoor environment in building. And interest and effort to improve indoor air environment among various indoor environment elements have continuously increased since 1990s, because it is examined scientifically that various contaminants generated indoor affect human body. Specially, indoor air contaminants generated from apartments are those exhausted from resident's indoor environment, closing materials and household. Indoor air environment in buildings is different according to pollution degree, existence availability of pollution source, ventilation amount, and meteorology. It is known that other contaminants more than about 900 kinds generate according to a kind of work or action in a room. Specially, nowadays buildings are well insulated and confidentiality-centered for environment protection and economical side. So indoor air contaminants are generated from indoor air pollution sauces of unprepared ventilation, human body carbon dioxide emissions, and various building materials. when these are accumulated in long term human body, it is harmful to resident's health, but awareness for this is very insufficient. Because bedroom is space that people inhabit for a long time by unconscious state and indoor environment occupies important part for resident's health and quality of life at sleep, the actual condition of air quality is investigated, improvement countermeasure is considered, and ventilation amount is analyzed. In this study, putting case that the most longest stayed time is sleeping time when people inhabit in the apartment, the air quality according to volume of bedroom space at sleep was measured and analyzed, and the data acquired will be the basis for improvement on this.