• Title/Summary/Keyword: Particulate Matters (PM)

Search Result 229, Processing Time 0.029 seconds

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

An Asian Dust Compensation Scheme of Light-Scattering Fine Particulate Matter Monitors by Multiple Linear Regression (다중 선형 회귀에 의한 광산란 초미세먼지 측정기의 황사 보정 기법)

  • Baek, Sung Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.92-99
    • /
    • 2021
  • Light-scattering fine particulate matter monitors can measure particulate matter (PM) concentrations in every second and can be designed in a portable size. They can measure the concentrations of various PM sizes (PM1.0, PM2.5, PM4.0 and PM10) with a single sensor. They measure the number and size of particulate matters and convert them to weight per volume (concentration). These devices show a large error for asian dust. This paper proposes a scheme that compensates the PM2.5 concenstration error for asian dust by multiple linear regression machine learning in light-scattering PM monitors. This scheme can be effective with only two or three types of PM sizes. The experimental results compare a beta-ray PM monitor of national institute of environmental research and a light-scattering PM monitor during a month. The correlation coefficient (R2) of theses two devices was 0.927 without asian dust, but it was 0.763 due to asian dust during the entire experimental period and improved to 0.944 by the proposed machine learning.

Separation Prediction Model by Concentration based on Deep Neural Network for Improving PM10 Forecast Accuracy (PM10 예보 정확도 향상을 위한 Deep Neural Network 기반 농도별 분리 예측 모델)

  • Cho, Kyoung-woo;Jung, Yong-jin;Lee, Jong-sung;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The human impact of particulate matter are revealed and demand for improved forecast accuracy is increasing. Recently, efforts is made to improve the accuracy of PM10 predictions by using machine learning, but prediction performance is decreasing due to the particulate matter data with a large rate of low concentration occurrence. In this paper, separation prediction model by concentration is proposed to improve the accuracy of PM10 particulate matter forecast. The low and high concentration prediction model was designed using the weather and air pollution factors in Cheonan, and the performance comparison with the prediction models was performed. As a result of experiments with RMSE, MAPE, correlation coefficient, and AQI accuracy, it was confirmed that the predictive performance was improved, and that 20.62% of the AQI high-concentration prediction performance was improved.

Genotoxic Effect of Air-borne Particulate Matter in Residential Area of Seoul City (서울시내 주거지역 미세먼지의 유전독성 영향)

  • Oh Seung Min;Sung Hye Kyoung;Kim Eun Sil;Kim Jong Geuk;Ryu Byung Taek;Chung Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.365-374
    • /
    • 2005
  • Ambient air particulate matters are classified into two distinct modes in sire distribution, namely the coarse and fine particles. Correlation between high particulate concentration and adverse effect on human populations has long been recognized. However, the toxicology of these adverse efforts has not been clarified. We investigated the genotoxic effect of PM 2.5 collected from urban area in Seoul by comet assay (A549 cells), CBMN assay (CHO-K1 cells) and EROD-microbioassay (H4IIE cells). Results from in vitro micronucleus assay and comet assay showed that PM 2.5 samples collected from traffic area, residential area and indoor air induced chromosomal damage and DNA breakage in a non-cytotoxic dose. The complex mixture effect of these PM 2.5 extracts was quantified by EROD-microbioassay in terms of its bio-TEQ (biologiral -TCDD equivalent concentration) which was 70.87$\pm$28.07, 93.55$\pm$21.80 and 14.31 $\pm$ 1.10 ng/g-PM 2.5 in traffic area, residental area and indoor air samples, respectively. Conclusively, we suggested that PM 2.5 collected from traffic area and residential area contains CYPIA inducer and genotoxic materials.

Concentration Characteristics and Health Effect Assessment of Atmospheric Particulate Matters During Asian Dust Storm Episodes (황사 에피소드 발생시 대기먼지의 농도 특성과 인체 영향)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • The Asian dust storms which originated in the deserts of Mongolia and China transported particles to Korea and led to a high concentration of atmospheric particulate matters (PM) of more than $1000{\mu}g/m^3$ throughout the country in the spring, of 2007. Public concern, in Korea, about the possible adverse effects of these dust events has increased, as these dust storms can contain various air pollutants emitted from heavily industrialized eastern China. The objectives of this study were to understand the concentration characteristics of PM as a function of particle size between the Asian dust storm episodes and non-Asian dust period and to consider the mass size distribution of PM in the Asian dust storms and their water soluble ion species on the potential, possible effects on deposition levels in the three regions (nasopharyngeal, tracheobronchial, and alveolar) of the human respiratory system. The size distribution of PM mass concentration during the Asian dust storms showed a peak in the coarse particle region due to the long-range transport of soil particles from the deserts of Mongolia and China, which was identified by HYSPLIT-4 model for backward trajectory analysis of air arriving in the sampling site of Iksan. During the non-Asian dust period, there were two different types in PM size distribution: bimodal distribution when low concentrations of $PM_{2.5}$ were observed, while unimodal distribution having a peak in fine particle region when high concentrations of $PM_{2.5}$ were showed. This unimodal distribution with high concentrations of fine particulate and secondary air pollutants such as ${SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$ was found to be due to the long-range transport of air pollutants from industrialized eastern China. During the Asian dust storms, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $128.8{\mu}g/m^3$, $216.5{\mu}g/m^3$, and $89.6{\mu}g/m^3$, respectively. During the non-Asian dust period, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $8.4{\mu}g/m^3$, $9.5{\mu}g/m^3$ and $38.5{\mu}g/m^3$, respectively.

PM Management Methods Considering Condensable PM Emissions from Stationary Sources in Seoul and Incheon (고정오염원의 응축성 먼지 배출량을 고려한 서울과 인천의 먼지 관리방안)

  • Lee, Im Hack;Choi, Doo Sung;Ko, Myeong Jin;Park, Young-Kwon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2017
  • In this study, the new particulate matter emissions considering condensable PM (CPM) of stationary pollutant sources were calculated to modify the CAPSS emissions based on only filterable PMs in Seoul and Incheon. When the new calculated emissions were compared to the existing filterable PM based emissions of local governments, different contribution patterns of emission sources were found. For example, the proportion of mobile sources was high when the filterable PM was considered; however, the contribution of non-industrial sources was dominant in Seoul when the emissions of CPM were considered. Also, the proportion of energy industrial combustion and manufacturing combustion sources was significant in Incheon when CPM emissions considered. Therefore, it seems to be much desirable to consider CPM emissions for determining adequate locations of collective energy facilities and manufacturing combustion facilities in the future. In addition, CPM should be considered to solve the dust problem nationwide. The emission analysis, diagnosis, prediction and countermeasures using CPM emissions should be appropriately performed.

Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter (경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가)

  • Jeong, Seonghun;Park, Sung-Eun;Kim, Min-Jung;Cho, Hyung-Jei;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.

A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle (전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 2018
  • This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.

Physicochemical Characteristics of Particulate Matter Emitted from Aluminum Casting Process (알루미늄 주조과정에서 배출되는 입자상물질의 물리·화학적 특성)

  • Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.297-304
    • /
    • 2024
  • PM (Particulate Matters) was collected from a bag filter dust collector at an aluminum foundries, and its physicochemical properties were investigated using particle size analyzer and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM/EDS). The median volume diameter of the particles passing through the pretreatment dust collector of the cyclone was approximately 10 ㎛. The cyclone pretreatment dust collector was shown to significantly reduce the throughput of large particles with a particle size of 100 ㎛ or more. The chemical composition of the particles showed a high Al content, and trace amounts of Mg, Si, and Zn were detected.

Effects of Particulate Matters on A549 and RAW 264.7 Cells (대도시의 입자상 물질이 A549와 RAW 264.7 세포에 미치는 영향)

  • Baak, Young-Mann;Kim, Ji-Hong;Kim, Kyoung-Ah;Ro, Chul-Un;Kim, Hyung-Jung;Lim, Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • Objectives : To investigate the effects of particulate matter (PM), a marker of environmental pollution derived from combustion sources, on lung epithelial cells (A549) and macrophage (RAW 264.7). Methods : The production of reactive radicals from lung cells, the lipid peroxidation of cell membrane, and the cytotoxicity of PM were measured using an in vitro model. The results were compared with a control group. Results : The presence of PM significantly increased the production of reactive oxygen species and reactive nitrogen species with time and in a dose dependent pattern and also increased the malondialdehyde concentration in lung epithelial cells. The cytotoxicity of PM was increased with increasing concentration of PM. Conclusions : It has been suggested that urban particulate matter causes an inflammatory reaction in lung tissue through the production of hydroxyl radicals, nitric oxides and numerous cytokines. The causal chemical determinant responsible for these biologic effects are not well understood, but the bioavailable metal in PM seems to determine the tonicity of inhaled PM.

  • PDF