• Title/Summary/Keyword: Particulate Matters (PM)

Search Result 228, Processing Time 0.031 seconds

The Effect of Chelators and Reductants on the Mobilization of Metals from Ambient Particulate Matter: More Transition Metals are Mobilized with PM2.5 than with PM10

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.155-155
    • /
    • 2002
  • Ambient urban particulate matters contain various transition metals. When the particulate matters are inhaled into the lung, not all but some part of metals from the particles might be mobilized to participate in a reaction that can damage various biomolecules, such as DNA and proteins. The dust particle size as well as organic acids may influence the metal mobilization. Thus, the mobilization of the metal from SRM1648 (NIST, USA) and urban particulate matters (PM2.5 and PM10) was measured in the presence of artificial or biological chelator with or without reductant. The degree of the mobilization was higher with the artificial or biological chelator than the control with saline. In some cases, a reductant increased the mobilization as much as about 5 times the control without the reductant. Especially, the mobilization of Fe was greatly influenced by the presence of reductants. In general, the degree of the mobilization of the transition metal was higher with PM2.5 than with PM10. Therefore, it is expected that, considering the previously known toxicities of the transition metals, the PM2.5 is more damaging to various biomolecules than PM10. The results also suggest that not the total amount but the mobilizable fraction of the metal in the dust particles should be considered with regard to the toxicity of the urban particulate matters.

  • PDF

Combustion Characteristics of Heavy Fuel Oil-water Emulsion

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • This study is intended to check the flame temperature to raise in burning grade C heavy fuel oil and emulsion fuel oil in a boiler and to measure the concentration of Dry Shoot(DS) and Soluble Organic Fraction(SOF) after collecting the Particulate Matters (PM). The flames temperature in boiler was measured by burning grade C heavy oil and oil-water emulsion (C heavy oil $70\%\;and\;30\%$ of water) Combustion characteristics of two fuels was also compared by trapping particulate matters (PM) in exhaust gas and measuring the generated quantities of DS and SOF in fuel gas.

Investigation and Analysis of Particulate-matters and Ammonia Concentrations in Mechanically Ventilated Broiler House According to Seasonal Change, Measurement Locations and Age of Broilers (강제환기식 육계 사육시설의 계절별, 지점별, 주령별 PM, NH3 농도 조사 및 분석)

  • Jang, Dong-hwa;Kwon, Kyeong-seok;Kim, Jong-bok;Kim, Jung-kon;Yang, Ka-young;Choi, Sung-min;Jang, YuNa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • Air quality related to particulate matters and ammonia is being come to the fore as the national concern in Korea. CAPSS (Clean Air Policy Support System) provides emission coefficients of these kinds of particulate and gaseous matters in the fields of livestock; however reliability issues are consistently mentioned. Evaluation of emission rates of PM2.5 and NH3 of the country is very important, but only few studies are available as the background related to observation of the concentration of the particulate matter and ammonia, especially within livestock house in Korea. In this paper, long-term measurement of PM10, PM2.5, and ammonia within the mechanically ventilated broiler house were carried out to introduce backgrounds of generation and emission of the particulate matters and ammonia. Measurement results were analyzed according to seasonal changes, age of broilers(weeks) and measurement locations. Concentration of inhalable and respirable dust were also evaluated in terms of occupational respiratory health according to increase in broiler's activity. From the results of this study, identification of the generation mechanisms of the particulate and gaseous matters, and evaluation of the emission rate of these in the broiler house will be carried out.

A Study on the Characteristics of Particulate Matter in the Coastal Regions (해안지역에서 입자상물질의 특성에 관한 연구)

  • 최민규;조기철;강충민;여현구;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • Particulate matters(less than 10 $\mu$m, PM10) at Kanghwa and Yangyang, which are located in the western and the eastern coastal regions in Korea, were measured in using low volume air sampler from December 1995 to November 1996, and their characteristics were investigated from the view point of background level.(and in order to characterize the particulate matters.) The particulate matters were analyzed for major water soluble ionic components(SO$_{4}^{2-}$, NO$_{3}^{-}$, Cl$^{-}$, Na$^{+}$, NH$_{4}^{+}$, K$^{+}$, Mg$^{2+}$ and Ca$^{2+}$) by ion chromatography. Mass concentrations of particulate matters were $48.77 \pm 22.45 \mug/m^{3}$ at Kanghwa and $54.04 \pm 32.98 \mug/m^{3}$ at Yangyang and SO$_{4}^{2-}$, NO$_{3}^{-}$ and NH$_{4}^{+}$ contributed largely to water soluble ionic components. nss(non sea salt)-SO$_{4}^{2-}$, contributed more than 95 percentage to SO$_{4}^{2-}$ and nss-K$^{+}$ and nss-Ca$^{2+}$ also contributed high percentages to K$^{+}$ and Ca$^{2+}$. It was supposed that most SO$_{4}^{2-}$, was originated from anthropogenic sources, and K$^{+}$ and Ca$^{+}$ were mainty originated from soil. The results of factor analysis suggested possibility of interpreting the correlation between air pollutants and regional characteristics.

  • PDF

Assessment and Estimation of Particulate Matter Formation Potential and Respiratory Effects from Air Emission Matters in Industrial Sectors and Cities/Regions (국내 산업 및 시도별 대기오염물질 배출량자료를 이용한 미세먼지 형성 가능성 및 인체 호흡기 영향 평가추정)

  • Kim, Junbeum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.220-228
    • /
    • 2017
  • Since the fine particulate matters occurred from mainly combustion in industry and road transport effect to human respiratory health, the interest and importance are getting increased. In 2013, the World Health Organization (WHO) concluded that outdoor air pollution is carcinogenic to humans, with the particulate matter component ($PM_{10}$ and $PM_{2.5}$) of air pollution most closely associated with increased cancer incidence, especially cancer of the lung. Therefore, many researches have been studied in the quantification and data development of fine particulate matters. Currently, the Ministry of Environment and cities/regions are developing the fine particulate matter data and air emission information. Particularly just $PM_{10}$ and $PM_{2.5}$ data is used in the fine particulate matters warning and alert. The data of NOx, SOx, $NH_3$, which have the particulate matter formation potential are not well considered. Also, the researches related with particulate matter formation potential and respiratory effects by industrial sectors and cities/regions are not conducted well. Therefore, the purpose of this study is to evaluate and calculate particulate matter formation potential and respiratory effects in 11 industrial sectors and cities using NOx, SOx, $PM_{10}$, $NH_3$ data (developed by Ministry of Environment and National Institute of Environmental Research) in 2001 and 2013. The results of this study will be provided the particulate matter formation potential and respiratory effects and will be used for future the fine particulate matter researches.

Measurements of Particulate Matters for the HSDI Diesel Engine with DOC using the ELPI (ELPI를 이용한 산화촉매 장착 고속 직접분사식 디젤엔진의 입자상물질 계측)

  • Choi, Byung-Chul;Jang, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2245-2250
    • /
    • 2003
  • Particulate matters(PM) have bad effect on the health. We carried out measurements of diesel PM under $10{\mu}m$ diameter from a HSDI diesel engine with a diesel oxidation catalyst(DOC) by using the ELPI. This paper compares the two results of the smoke level and the PM level of masses and numbers. We also investigated the effect of the DOC. Under high speed and load, HSDI diesel engine exhausts much masses of particulate matters over 100nm diameter, and a number of PM from 7 to 100nm diameters at the same condition. DOC could reduce the total mass of the PM. However, the DOC could increase the number of ultra fine PM. Before light-off of the soot, the DOC absorb the PM and the DOC oxidize the PM after light-off temperature. The fine PM could be made during the oxidation. Therefore, the advanced DOC is needed to reduce the number of the fine PM.

  • PDF

Atmospheric Dispersion of Particulate Matters (PM10 and PM2.5) and Ammonia Emitted from Livestock Farms Using AERMOD (AERMOD를 이용한 축산 미세먼지, 초미세먼지, 암모니아 배출의 대기확산 영향도 분석)

  • Lee, Se-Yeon;Park, Jinseon;Jeong, Hanna;Choi, Lak-Yeong;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.13-25
    • /
    • 2021
  • The particulate matters (PM10 and PM2.5) and ammonia emitted from livestock farms as dispersed to urban and residential areas can increase the public's concern over the health problem, social conflicts, and air quality. Understanding the atmospheric dispersion of such matters is important to prevent the problems for the regulatory purposes. In this study, AERMOD modeling was performed to predict the dispersion of livestock particulate matters and ammonia in Gwangju metropolitan city and five surrounding cities. The five cities were divided into 40 sub-zones to model the area-based emissions which varied with the number of livestock farms, species and growth stages of the animals. As a result, the concentrations of PM10, PM2.5 and ammonia resulted from livestock farms located in the surrounding cities were 2.00 ㎍ m-3, 0.30 ㎍ m-3 and 0.04 ppm in the southwestern part of Gwangju based on the average concentration of 1 hour. These values accounted for 0.7% of PM10 concentration, 0.5% of PM2.5 concentration, and 0.4% of the ammonia concentration in Gwangju, contributing to a small amount of air pollution compared to other sources. As preventive measures, the plantation was applied to high emission source areas to reduce particulate matters and ammonia emissions by 35% and 31%, respectively, and resulted in decrease of the area of influence by 57% for particulate matters and 59% for ammonia.

PM Reduction Efficiency using Metal Type DPF (금속 DPF를 이용한 입자상물질의 저감효율에 관한 연구)

  • Rah, Wan Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.176-180
    • /
    • 2013
  • After-treatment apparatus ceramic DPF (diesel particulate filter) have been applied to reduce harmful particulate matters(PM) among emissions from diesel engines so far, but they are easy to be fragile and weak in thermal shock. This research aims to investigate a metal type filter which is superior in mechanical strength and heat conduction rate and is beneficial economically in manufacturing. Basic performance of metal DPF such asloading test, temperature gradient test, thermal shock test, heat resistant test and back pressure was carried out. And then their experimental data provided key informations in designing and manufacturing such as detailed structures of metal mesh filter. Also diesel engine and vehicle of 2957cc displacement was tested under lug-down 3 mode and CVS-75 mode. PM reduction efficiency was 54.5% using metal DPF without loss of performance and fuel consumption.

Assessment of Airborne Bacteria and Particulate Matters Distributed in Seoul Metropolitan Subway Stations (서울시 일부 지하철역 내 분포하는 부유 세균 및 입자상 오염물질 평가)

  • Kim, Ki-Youn;Park, Jae-Beom;Kim, Chi-Nyon;Lee, Kyung-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.254-261
    • /
    • 2006
  • In activity areas of subway workers and passengers in Seoul metropolitan subway lines 1-4, mein concentrations of airborne bacteria were relatively higher in workers' bedroom and station precinct whereas concentrations of particulate matters, $PM_{10}$ and $PM_{2.5}$, were relatively higher in platform, inside train and driver's seat as compared with other activity areas. This result indicates that little correlation between airborne bacteria and particulate matters was found, which assumed that most airborne particulate matters distributed in subway consisted of mainly inorganic dust like a metal particles. Mean concentrations of $PM_{10}$ and $PM_{2.5}$ in station precinct and platform exceeded the threshold limit value ($PM_{10}:150{\mu}g/m^3,\;PM_{2.5}:65{\mu}g/m^3$) but those in station office and ticket office were below it. The genera identified in all the activity areas of subway over 5% detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium, of which Staphylococcus and Micrococcus covered over 50% of total airborne bacteria and were considered as predominant genera distributed in subway.

Environmental Planning Contermeasures Considering Spatial Distribution and Potential Factors of Particulate Matters Concentration (미세먼지 농도의 공간적 현황 및 잠재영향인자를 고려한 환경계획적 대응 방향)

  • Sung, Sun-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.89-96
    • /
    • 2020
  • Adverse impact of Particulate Matters(PM10, PM2.5; PMs) significantly affects daily lives. Major countermeasures for reducing concentration of PMs were focused on emission source without considering spatial difference of PMs concentration. Thus, this study analyzed spatial·temporal distribution of PMs with observation data as well as potential contributing factors on PMs concentration. The annual average concentration of PMs have been decreased while the particulate matter warnings and alerts were significantly increased in 2018. The average concentration of PMs in spring and winter was higher than the other seasons. Also, the spatial distribution of PMs were also showed seasonality while concentration of PMs were higher in Seoul-metropolitan areas in all seasons. Climate variables, emission source, spatial structure and potential PM sinks were selected major factors which could affects on ambient concentrations of PMs. This paper suggest that countermeasures for mitigating PM concentration should consider characteristics of area. Climatic variables(temperature, pressure, wind speed etc.) affects concentrations of PMs. The effects of spatial structure of cities(terrain, ventilation corridor) and biological sinks(green infrastructure, urban forests) on concentration of PMs should be analyzed in further studies. Also, seasonality of PMs concentration should be considered for establishing effective countermeasures to reduce ambient PMs concentration.