• Title/Summary/Keyword: Particulate

Search Result 2,925, Processing Time 0.034 seconds

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Analysis on Socio-cultural Aspect of Willingness to Pay for Air Quality (PM10, PM2.5) Improvement in Seoul (서울지역 미세먼지 문제 개선을 위한 사회문화적 지불의사액 추정)

  • Kim, Jaewan;Jung, Taeyong;Lee, Taedong;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.101-112
    • /
    • 2019
  • Over the last few years, air pollution ($PM_{10}$, $PM_{2.5}$) in the Seoul metropolitan area (SMA) has emerged as one of the most concerned and threatening environmental issues among the residents. It brings about various harmful effects on human health, as well as ecosystem and industrial activities. Governments and individuals pay various costs to mitigate the level of air pollutants. This study aims to empirically find the willingness to pays (WTP) among the parents from different socio-cultural groups - international and domestic groups to mitigate air pollution ($PM_{10}$, $PM_{2.5}$) in their residential area. Contingent Valuation Methods (CVM) is used with employing single-bounded dichotomous choice technique to elicit the respondent's WTP. Using tobit (censored regression) and probit models, the monthly mean WTP of the pooled sample for green electricity which contributes to improve air quality in the region was estimated as 3,993 KRW (3.58 USD). However, the mean WTP between the international group and domestic group through a sub-sample analysis shows broad distinction as 3,325KRW (2.98 USD) and 4,449 KRW (3.98 USD) respectively. This is because that socio-cultural characteristics of each group such as socio-economic status, personal experience, trust in institutions and worldview are differently associated with the WTP. Based on the results, the society needs to raise awareness of lay people to find a strong linkage between the current PM issue and green electricity. Also, it needs to improve trust in the government's pollution abatement policy to mobilize more assertive participation of the people from different socio-cultural background.

Studies on Antioxidant, Anti-inflammatory and Whitening Effects of Oriental Herbal Extracts (Mix) including Eucommiae cortex (두충을 포함하는 한방추출물(Mix)의 항노화, 항염, 미백 효능 활성에 관한 연구)

  • Choi, Da Hee;Kim, Mi Ran;Kim, Min Young;Kim, Ho Hyun;Park, Sun-Young;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • Recently, due to the increase in skin diseases caused by particulate matter, endocrine disruptor and environmental changes, the trend of development of cosmetic materials has been shifting to the more safe and effective ingredients based on natural materials rather than existing synthetic compounds like steroids and antihistamines. This study aimed to develop a new natural cosmetic materials using oriental herbs such as Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus. First, DPPH assay was performed to examine the antioxidative activity of the herbal extract (Mix) and 98.8% DPPH radical scavenging activity was confirmed at $400{\mu}g/mL$ concentration of it. In order to confirm the whitening efficacy of oriental herbal extracts(mix), the amount of melanin synthesized after stimulation of ${\alpha}-MSH$ with B16F10 cells was measured. Results showed that it was decreased to 27.1% comparing with the only ${\alpha}-MSH$ treated group, which confirmed the whitening efficacy. Also, both nitric oxide(NO) production and iNOS and COX-2 expression were significantly reduced in RAW264.7 macrophages activated by LPS in the presence of the extracts(Mix). The mRNA expression of the inflammatory cytokines such as $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ was also analyzed to confirm the inhibition effect of the extracts on inflammation. Finally, to confirm the enhancement of skin barrier function, the expression of claudin 1 gene, a tight junction protein, was observed using human keratinocyte HaCaT cells and increased as concentration dependent manner. From these results, it is concluded that the oriental herbal extracts(Mix) containing Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus is effective for antioxidant, anti-inflammation, skin whitening, and skin barrier and thus could be applied as a new natural cosmetic material.

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia (황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구)

  • Choi, Daeryun;Yun, Huiyoung;Chang, Limseok;Lee, Jaebum;Lee, Younghee;Myoung, Jisu;Kim, Taehee;Koo, Younseo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.531-546
    • /
    • 2018
  • Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.

Analysis of Major Factors related to the Generation of Fine Particulate Matter in Hanwoo Manure Composting Facilities (한우분뇨 퇴비화시설에서의 미세 입자상물질 발생 주요인자 분석)

  • Jeong, Kwang-Hwa;Park, Hoe-Man;Lee, Dong-Jun;Kim, Jung-Kon;Lee, Dong-Hyun;Kim, Da-Hye
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.53-68
    • /
    • 2020
  • The concentrations of ammonia, hydrogen sulfide and fine dust were measured in the compost facility of a full-time Hanwoo breeding farms. The experiments were conducted in stack type composting facility(T1) and mechanical-stirred composting facilities(T2, T3). In the stack type composting facility, the highest temperature of compost pile was 46℃, and in the two mechanical-stirred composting facilities, it rose to 63℃ and 68℃, respectively. The concentrations of PM2.5 at T1, T2 were 15 ㎍/㎥ and 5~10 ㎍/㎥, respectively. And the concentration of PM2.5 at T3 was below 10 ㎍/㎥. The highest concentration of ammonia generated at T1 was 4 ppm, but no hydrogen sulfide was detected. The ammonia concentrations at T2 and T3 were 3 ppm and 4 ppm, respectively. However, hydrogen sulfide was not detected in both facilities. At T3, the ammonia concentration increased to 65 ppm at the point where the compost was stirred with a mechanical agitator. During composting period, the pH of the compost pile decreased from 9.06 to 8.94 and then increased to 9.14 as the composting period elapsed. The NaCl content of compost was 0.09% after composting process was complete. Moisture content of compost decreased from 65.9% to 62% as composting progressed. As composting proceeded, the content of volatile solids decreased from 65.6% to 64.7% and the content of TKN decreased from 1.327% to 1.095%.

Changes in microbial phase by period after hepa filter replacement in King oyster(Pleurotus eryngii) mushroom cultivation (큰느타리 재배사에서 헤파필터 교체 이후 기간에 따른 미생물상 변화)

  • Park, Hye-Sung;Min, Gyong-Jin;Lee, Eun-Ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.398-402
    • /
    • 2020
  • This study was conducted to set up a proper replacement cycle of High Efficiency Particulate Air (HEPA) filters by observing the microbial populations in the air of the cultivation house of Pleurotus eryngii, before and after HEPA filter replacement at different periods. The density of bacteria and fungi in the air during each cultivation stage was measured using a sampler before the replacement of the HEPA filter. The results showed that airborne microorganisms had the highest density in the mushroom medium preparation room, with 169.7 CFU/㎥ of bacteria and 570 CFU/㎥ of fungi, and the removed old spaun had 126.3 CFU/㎥ of bacteria and 560 CFU/㎥ of fungi. The density of bacteria and fungi in the air at each cultivation stage before the replacement of the HEPA filter was 169.7 CFU/㎥ and 570 CFU/㎥, and 126.3 CFU/㎥ and 560 CFU/㎥, during the medium production and harvesting processes, respectively. After the replacement of the HEPA filter, the bacterial density was the lowest in the incubation room and the fungal density was the lowest in the cooling room. The microbial populations isolated at each period consisted of seven genera and seven species before the replacement, including Cladosporium sp., six genera and six species after 1 month of replacement, including Penicillium sp., 5 genera and 7 species after 3 months of replacement, including Mucor plumbeus, and 5 genera and 12 species, 5 genera and 10 species, and 5 genera and 10 species, 4, 5, and 6 months after the replacement, respectively, including Penicillium brevicompactum. During the period after replacement, the species were diversified and their number increased. The density of airborne microorganisms decreased drastically after the replacement of the HEPA filter. Its lowest value was recorded after 2 months of replacement, and it increased gradually afterwards, reaching a level similar to or higher than that of the pre-replacement period. Therefore, it was concluded that replacing the HEPA filter every 6 months is effective for reducing contamination.

A Study on the Functional Feeding Groups and Community Stability of Benthic Macroinvertebrate in Forest Fire Area (산불지의 저서성대형무척추동물 섭식기능군 및 군집안정성에 관한 연구)

  • Sim, Kwang Sub;Kim, Myoung Eun;Lim, Joo Hoon;Seo, Eul Won;Lee, Jong Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • This study was conducted for searching the functional feeding groups, and community stability of the macroinvertebrate on forest fire area of Uljin-gun. The samples were collected from 2 sites of control area and 2 sites of experimental area during 2007 to 2009. The identified species were 89 belonged to 47 families, 16 order, 6 class, and 4 phylum in control area. And 84 belonged to 43 families, 16 order, 6 class, and 4 phylum were identified in experimental area. As a result of changes in species and individuals of E.P.T. taxa investigated in experimental area by year, Ephemeroptera was 21 species, $2,434.6inds./m^2$, Plecoptera was 3 species, $199.8inds./m^2$, and Trichoptera 14 species, $540.2inds./m^2$ in 2007. And in 2009, Ephemeroptera was 9 species, $296inds./m^2$, Trichoptera was 4 species, $44.4inds./m^2$, and Plecoptera was none, showing that species and individuals belonging to E.P.T. taxa decrease rapidly every year. Community analysis by year, in 2008 when the water system started to be influenced by the fire directly, it showed a trend that H' and RI decreased in the experimental area. Functional feeding group by year, it showed a trend that species and individuals of GC type which is a functional group picking up and eating FPOM (fine particulate organic matter) from deposits in the bottom of water or benthic areas and performs an important function of material circulation in ecosystem decrease every year. Community stability by year, an environment of water system in forest fire area started to be somewhat destroyed, from 2008, it is shown that both species in I area which have great ability of resistance and recovery and species in III area which live in relatively stable water system decreased a little.

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.