Kim, Bong Gyun;Lee, Won Sang;Jo, Hye In;Lee, Bong Gyou
The Journal of Society for e-Business Studies
/
v.25
no.1
/
pp.109-121
/
2020
The purpose of this study is to find out primary policies for reducing PM(particulate matter) as well as for improving the quality of life. Serious particulate matters cause to diverse healthcare and economy problems including business transactions. Unfortunately, until recently there are very few researches regarding the decision-making process for particulate matter policies. This study has applied the AHP(Analytic Hierarchy Process) method to develop cooperative policy making processes. The upper layer of this hierarchy analysis consists of four parts, i.e., transportation, production facility, living environment, and urban planning management. And each upper layer parts has their own three policies. 25 experts including policy-makers, academic researchers and industrial specialists have decided the primary policies and directions. The most significant PM policy is the mandatory reduction of air pollution and suspension of factory operation in the production industry. The results of this study can lead to guidelines for making environmental policies.
Under-fired charbroiling cooking processes are known as important contributors of particulate matter (PM). In this study, we characterized the emission of particulate matters from under-fired charbroiling cooking processes using the hood method. Accumulated mass concentration of $PM_{10}$ was 92.2~99.5% and particle size of 2.0~2.5 ${\mu}m$ was highest. The concentration of PM increased very sharply at the beginning of charbroiling meats and then gradually decreased as the charbroiling continued. PM concentration also increased very sharply when gravy from meat spilled onto the frame of fire. However, mass concentration during charbroiling using only charcoals was very low compared to that of meats. We estimated the emission factors of charcoal, pork belly and pork shoulder respectively; 0.01~0.02 g/kg, 5.02~6.26 g/kg, 2.86~4.15 g/kg of $PM_{2.5}$, 0.01~0.03 g/kg, 7.44~7.91 g/kg, 4.54~5.56 g/kg of $PM_{10}$, and 0.02~0.05 g/kg, 7.59~7.95 g/kg, 4.93~5.68 g/kg of TSP. The emission factors of charcoal were negligible and the emission factors of pork belly were higher than that of pork shoulder. Emission rates of particulate matters from under-fired charbroiling cooking process were estimated as 578,009~1,265,152 kg/yr of $PM_{2.5}$, 917,539~1,598,619 kg/yr of $PM_{10}$ and 996.358~1,606,703 kg/yr of TSP. But emission factors should be verified with an in-stack cascade impactor because the reported method involves some assumptions.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.6
/
pp.689-695
/
2018
This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.
The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.
Journal of Korean Society for Atmospheric Environment
/
v.11
no.1
/
pp.37-44
/
1995
Concentration of particulate nitrate classified by formation mechanism and particle diameter in ambient air was determined from Feb. to Oct. 1993. Sampling was carried out using a two-stage Andersen air sampler at the top of a five-story building located at Kon-Kuk University in seoul. Concentration of N $H_{4}$N $O_{3}$ in TSP was measured by pyrolysis of sample filters at 160.deg.C for 1hr. concentration of N $H_{4}$N $O_{3}$ was higher in winter time compared with that in summmer time. Also, concentration of N $H_{4}$N $O_{3}$ was higher in fine particles compared with that in coarse particle. The range of N $H_{4}$N $O_{3}$ concentration was between 2.9 and 9.9.mu.g/ $m^{3}$. Weight fraction of N $H_{4}$N $O_{3}$ in total particulate nitrate was 31.1 .sim. 59.5%, and weight fraction of N $H_{4}$N $O_{3}$ in TSP was 2.1 .sim. 11.2%. Concentration of NaN $O_{3}$, which originated from sea salt, was highest in spring time and lowest in summer time,and the concentration range was between 0.1 and 0.7.mu.g/ $m^{3}$. NaN $O_{3}$/TSP ratio was very low (0.1 .sim. 0.4%) indicating that the portion of NaN $O_{3}$in TSP was negligible. Concentration of particulate nitrate originated from soil was 2.4 .sim. 2.9.mu.g/ $m^{3}$. Weight fraction of that in total particulate nitrate was 14.0 .sim. 37.1%.
Hong, Gi-Hoon;Park, Sun-Kyu;Chung, Chang-Soo;Kim, Suk-Hyun;Tkalin, Alexander V.;Lishavskaya, Tatiana S.
Journal of the korean society of oceanography
/
v.31
no.3
/
pp.134-143
/
1996
Sediment cores were collected from one site each in Amursky and Ussuriysky Bays in the Peter the great Bay for $^{210}Pb$, org C, N, biogenic Si, ${\delta}^{13}$C and ${\delta}^{15}$N analysis to elucidate the processes of biogenic particulate matter accumulation and early diagenetic change in the upper sediment column. Biogeochemistry at the core sites of both bays shows differences in sedimentation rate, sediment mixing, and diagenetic processes of particulate biogenic matter. Sedimentary organic matter at the core sites in both bays appeared to be largely derived from marine origin. Sedimentation rates are 173 and 118 mg $cm^{-2}$$yr^{-1}$(0.13 and 0.11 cm $yr^{-1}$) in Amursky and Ussuriysky Bays, respectively. The surface mixed layer in the core top was present in Amursky Bay but not in Ussuriysky Bay. At the core site in Amursky Bay, incorporation of biogenic particulate matter into the sediment from the overlying waters is 236, 19, 142 mmol $cm^{-2}$$yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which about 70${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the rest are buried at 25 cm sediment horizon. At the core site in Ussuriysky Bay, incorporation of biogenic particulate matter into the sediment from overlying waters is 164, 18, 76 mmol $cm^{-2}$$yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which less than 50${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the remainder are buried at 25 cm sediment horizon. This large difference of degradation of biogenic matter in the upper 25 cm sediment column appears to be resulted from the difference in sediment mixing rates between the two cores.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.26
no.1
/
pp.30-37
/
2016
Objectives: This study was performed to measure and evaluate the concentration, size distribution and fugitive emission of particulate matter from process operations at foundries. Methods: Particle matter was collected from three foundries, and samples were also collected from a background site for calculating the fugitive emission concentration of the foundries. For the collection of the samples, a Nanosampler cascade impactor was used. Results: The concentration of TSP in the samples collected from the three foundries was $0.675{\sim}1.222mg/m^3$, $PM_{10}$ was $0.525{\sim}1.018mg/m^3$ and $PM_{2.5}$ was $0.192{\sim}0.615mg/m^3$. The mass size distribution was bimodal or monomodal with maximum peak at two stage(size $2.5{\sim}10{\mu}m$). The mass median aerodynamic diameter(MMAD) was $1.80{\sim}3.98{\mu}m$. The fugitive emission concentration of TSP varies in the range of 0.65 to $1.21mg/m^3$, which exceeds the emission standard of fugitive dust($0.5mg/m^3$). Conclusions: Particle concentration and size is an important industrial hygiene factor to protect foundry workers. Furthermore, the presence of high emission of particulate pollutants has a significant negative impact on the ambient air of the study area. Therefore, it is important to improve both the process and prevention facility in oder to reduce particulate pollutants in foundries.
Park, Seong-Suk;Shin, Hye-Joung;Yi, Seung-Muk;Kim, Yong-Pyo
Journal of Korean Society for Atmospheric Environment
/
v.22
no.E1
/
pp.35-43
/
2006
Ambient particle size distributions of PCBs and their dry deposition fluxes were measured at a site in Seoul to quantify dry deposition fluxes of PCBs and size characteristics of PCBs in the air, and to estimate ambient concentrations of gaseous PCBs and dry deposition fluxes. The dry deposition plate was used to measure dry deposition fluxes of particulate mass and PCBs and a cascade impactor and rotary impactor were used to measure ambient particle size distributions for small ($D_p<9{\mu}m$) and large ($D_p>9{\mu}m$) particles, respectively. Six sample sets were collected from April to July 1999. The fluxes of particulate total PCBs (the sum of 43 congeners) ranged from 160 to $607ng\;m^{-2}day^{-1}$. The size distribution of total PCBs was bimodal with two peaks in small particle size ($D_p{\sim}0.6\;and\;6{\mu}m$, respectively) and, thus, mass concentration being dominant in small particles. The mean particulate PCBs concentration was $6.9{\mu}g$ PCBs/g. The concentrations of PCB homologues in the gas phase were estimated based on the particle/gas partition coefficient ($K_p$) with the measured values of particulate PCBs in this study and they were comparable to those observed in other previous studies. Dry deposition fluxes were estimated by calculating dry deposition velocities.
Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
Journal of Energy Engineering
/
v.26
no.4
/
pp.45-56
/
2017
Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.
Atmospheric particulate matters were collected by 8-stage non viable cascade impactor from October 2002 to August at Jeju City. Eight water-soluble ionic components $(Na^+,\;NH_{4}_{+},\;K^+,\;Ca{2+},\;Mg^{2+},\;CI^-,\;NO_{3}^-\;and\;SO_{4}^{2-})$ were analyzed by Ion Chromatography. The concentration of particulate matters and eight water-soluble ionic components were determined to investigate their size distributions. Particulate matters exhibited a tri-modal distribution with peak value around $0.9,\;4.0{\mu}m\;and\;9.5{\mu}m.$ In summer, the last peak value was lower than other season values likely due to particulate matter scavenged by rain water. Four ionic components $(Na^+,\;Ca^{2+},\;Mg^{2+}\;and\;CI^-)$ exhibited a bi-modal distribution in the coarse mode whereas three ionic components $(NH_{4}^+,\;K^+\;and\;SO_{4}^{2-})$ in the fine mode, with maximum peak value around $0.9{\mu}m.\;NO_{3}^-$ was found in both the coarse and the fine mode. The enrichment factor (E.F.) of each ionic components was calculated. Based upon E.F., it is considered that $Na^+,\;CI^-,\;and\;K^+$ in coarse paricle mode were delivered form oceanic source, but other components might have other source origins.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.