• Title/Summary/Keyword: Particular

Search Result 26,705, Processing Time 0.046 seconds

Effect on Mechanical Properties of Tungsten by Sintering Temperature (텅스텐 특성에 대한 소결온도의 영향)

  • Park, Kwang-Mo;Lee, Sang-Pill;Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih;Yildiz, Oguzhan;Bozkir, Samet M.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2022
  • The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.

Time Series Crime Prediction Using a Federated Machine Learning Model

  • Salam, Mustafa Abdul;Taha, Sanaa;Ramadan, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2022
  • Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.

Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate (PEMFC 금속 분리판용 316L 스테인리스강의 전기화학적 특성 및 손상 거동에 미치는 온도 및 염화물 농도의 영향)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.300-313
    • /
    • 2022
  • Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration on the electrochemical characteristics and damage behavior of 316L stainless steel in an accelerated solution simulating the cathodic operating condition of PEMFC(Polymer electrolyte membrane fuel cell). As a result of the experiments, the corrosion current density, damage size, and surface roughness increased as the temperature and chloride concentration increased. In particular, the temperature had a significant effect on the stability of the oxide film of 316L stainless steel. In addition, it was described that the growth of the pit was affected by the chloride concentration rather than the temperature. As a result of calculating the corrosion tendency to compare the pitting corrosion rate and the uniform corrosion rate, the uniform corrosion tendency became larger as the temperature increased. And the effects of chloride concentration on corrosion tendency was different according to temperature.

Knowledge on Fish in the Imwon-Gyeongje-Ji from a Korean Medical Perspective - A Comparative Study with the Dongui-bogam - (『림원경제지(林園經濟志)』 어류지식의 한의학적 고찰 - 『동의보감(東醫寶鑑)』과의 비교를 중심으로 -)

  • JEON, Jongwook
    • Journal of Korean Medical classics
    • /
    • v.35 no.3
    • /
    • pp.71-90
    • /
    • 2022
  • Objectives : This paper summarizes contents on fish in the Injeji and Jeoneo-Ji parts in the Imwon-Gyeongje-Ji and compares them with those in the Dong-uibogam from a Korean Medical perspective. Methods : Most of the knowledge of fish in the Imwon-Gyeongje-Ji is based on preceding material medica studies such as the Dongui-bogam in Joseon, the Bencao-gangmu in China, and the Hwahan Samjaedohoe in Japan. The influential relationships and the process of change among these knowledge information were examined within the context of each literature's development or through identifiable changes in knowledge on each particular kind of fish. Results & Conclusions : In the Imwon-Gyeongje-Ji, the consisting 16 parts are organically connected, sometimes functioning as cross-references. In particular, the medical contents on the efficacy of fish for treating disease is closely linked to contents on fish ecology and environment as written in the Jeoneo-Ji, which deals with the field of living things. On the more detailed knowledge on about 30 kinds of fish, one could grasp the formation process and changes of East Asian traditional knowledge on fishkind among historical study of influential Chinese texts, new stimulation and methodology through Japanese literature on natural history, and dynamic processes of inheriting and selectively accepting traditional knowledge of Joseon.

Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis (Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

Ethylenediamine Based Surface Defect Passivation for Enhancing Indoor Photovoltaic Efficiency of Perovskite (페로브스카이트 실내 광전변환 효율 향상을 위한 ethylenediamine 기반의 표면 결함 부동화 연구)

  • Seok Beom Kang;Joo Woong Yoon;Chang Yong Kim;Sangheon Lee;Hyemin Lee;Dong Hoe Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 2023
  • As the demand for the Internet of Things grows, research into indoor photovoltaics for wireless power is becoming important. In particular, perovskite has attracted considerable attention due to its superior performance compared to other candidates. However, various surface defects present in perovskite are a limiting factor for high performance. In particular, deep-level surface defects caused by uncoordinated Pb2+ ions directly limit charge transport. In low light environments, this appears to be a more significant hurdle. In this study, ethylenediamine, which can provide covalent bonding to uncoordinated Pb2+ ions through nitrogen, was used as a surface treatment material for indoor photovoltaics. X-ray photoelectron spectroscopy confirmed that the uncoordinated Pb2+ ions were effectively passivated by the terminal nitrogen of ethylenediamine. As a consequence, a VOC of 0.998 V, a JSC of 0.139 mA cm-2 and a fill factor of 83.03% were achieved, resulting in an indoor photoelectric conversion efficiency of 38.02%.

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

POLLUTION DETECTION FOR THE SINGULAR LINEAR PARABOLIC EQUATION

  • IQBAL M. BATIHA;IMAD REZZOUG;TAKI-EDDINE OUSSAEIF;ADEL OUANNAS;IQBAL H. JEBRIL
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.647-656
    • /
    • 2023
  • In this work, we are concerned by the problem of identification of noisy terms which arise in singular problem as for remote sensing problems, and which are modeled by a linear singular parabolic equation. For the reason of missing some data that could be arisen when using the traditional sentinel method, the later will be changed by a new sentinel method for attaining the same purpose. Such new method is a particular least square-like method which permits one to distinguish between the missing terms and the pollution terms. In particular, a sentinel method will be given here in its more realistic setting for singular parabolic problems, where in this case, the observation and the control have their support in different open sets. The problem of finding a new sentinel is equivalent to finding singular optimality system of the least square control for the parabolic equation that we solve.

Occupational Hazards in Firefighting: Systematic Literature Review

  • Maria F. Cuenca-Lozano;Cesar O. Ramirez-Garcia
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Background: Firefighting involves exposure of firefighters to risks related to this activity, serious injuries, and occupational diseases are recorded. There are other consequences such as thermal and emotional stress. This systematic review is proposed in order to analyze the risks and consequences faced by these workers and thus provide elements to improve safety management systems in institutions. Method: A descriptive observational study of systematic literature review on the risks and consequences of exposure to firefighters' activity was proposed, and the information was analyzed and described based on the available data and according to the variables determined. Results: The studies showed data on mechanical, physical, chemical, psychosocial risks, workers' perception and resilience, and epidemiological data. Information related to firefighters' activity on falls and slips, exposure to noise, and high concentrations of carbon monoxide is detailed. In addition, the relationship between burnout, cognitive, and physical fatigue as adverse effects on health and performance is mentioned. Conclusions: Among the preventive measures, the use of personal protective equipment is suggested, incorporation in prevention programs of information on exposure to risk factors, as well as the implementation of models that can predict the perception of workers, additionally, the generation of management systems with safety climate models for fire departments.