Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.4.300

Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate  

Shin, Dong-Ho (Graduate school, Mokpo national maritime university)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.21, no.4, 2022 , pp. 300-313 More about this Journal
Abstract
Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration on the electrochemical characteristics and damage behavior of 316L stainless steel in an accelerated solution simulating the cathodic operating condition of PEMFC(Polymer electrolyte membrane fuel cell). As a result of the experiments, the corrosion current density, damage size, and surface roughness increased as the temperature and chloride concentration increased. In particular, the temperature had a significant effect on the stability of the oxide film of 316L stainless steel. In addition, it was described that the growth of the pit was affected by the chloride concentration rather than the temperature. As a result of calculating the corrosion tendency to compare the pitting corrosion rate and the uniform corrosion rate, the uniform corrosion tendency became larger as the temperature increased. And the effects of chloride concentration on corrosion tendency was different according to temperature.
Keywords
PEMFC; Metallic bipolar plate; 316L stainless steel;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345 (2001). Doi: https://doi.org/10.1142/9789814317665_0031   DOI
2 H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088   DOI
3 S. M. Moon, S. Y. Lee, and D. Y. Kwon, Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells, Journal of Surface Science Engineering, 55, 133 (2022). Doi: https://doi.org/10.5695/JSSE.2022.55.3.133   DOI
4 K. M. Kim, J. H. Park, H. S. Kim, J. H. Kim, Y. Y. Lee, and K. Y. Kim, Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 37, 8459 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.02.127   DOI
5 H. McCrabb, E. J. Taylor, A. L. Morales, S. Shimpalee, M. Inman, and J. W. VanZee, Through-Mask Electroetching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels, The Electrochemical Society, 33, 991 (2010). Doi: https://doi.org/10.1149/1.3484593   DOI
6 C. Mele and B. Bozzine, Corrosion Performance of Austenitic Stainless Steel Bipolar Plates for Nafion- and Room-Temperature Ionic-Liquid-Based PEMFCs, The Open Fuels & Energy Science Journal, 11, 47 (2012). Doi: https://doi.org/10.2174/1876973X01205010047   DOI
7 I. H. Oh and J. B. Lee, Corrosion Behavior of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010).   DOI
8 R. C. Newman, W. P. Wong, H. Ezuber, and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corrosion, 45, 282 (1989). Doi: https://doi.org/10.5006/1.3577855   DOI
9 N. D. L. Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, A review of metal separator plate materials suitable for automotive PEM fuel cells, Royal Society of Chemistry, 2, 206 (2009). Doi: https://doi.org/10.1039/B813231N   DOI
10 A. A. Hermas and M. S. Morad, A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions, Corrosion Science, 50, 2710 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.029   DOI
11 S. K. Singh and A. K. Mukherjee, Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions, Journal of Materials Science & Technology, 26, 264 (2010). Doi: https://doi.org/10.1016/S1005-0302(10)60044-8   DOI
12 Y. G. You and J. H. Joo, Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates, Journal of Surface Science Engineering, 46, 168 (2013). Doi: https://doi.org/10.5695/JKISE.2013.46.4.168   DOI
13 K. S. Eom, E. A. Cho, S. W. Nam, T. H. Lim, J. H. Jang, H. J. Kim, B. K. Hong, and Y. C. Yang, Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition, Electrochimica Acta, 78, 324 (2012).   DOI
14 P. B. Madakson, I. A. Malik, S. K. Laminu, and I. G. Bashir, Effect of Anodization on the corrosion behavior of Aluminium Alloy in HCl acid and NaOH, International Journal of Materials Engineering, 2, 38 (2012). Doi: https://doi.org/10.5923/j.ijme.20120204.02   DOI
15 W. Ye, Y. Li, and F. Wang, The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization, Electrochimica Acta, 54, 1339 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.08.073   DOI
16 V. P. Forchhammer and H. J. Engell, Untersuchungen uber den Lochfraf3 an passiven austenitischen Chrom-Nickel-Stahlen in neutralen Chloridlosungen, Materials and Corrosion, 20, 1 (1969). Doi: https://doi.org/10.1002/maco.19690200103   DOI
17 D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435   DOI
18 S. Feliu, M. Morcillo, and B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55, 883 (1999).   DOI
19 A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel, Corrosion Science, 159, 108160 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108160   DOI
20 Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067   DOI
21 H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, pp. 191, 213, 214, Steel & Metal News (2007).
22 I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163   DOI
23 G. Latha and S. Rajeswari, Pitting and Crevice Corrosion Behaviour of Superaustenitic Stainless Steels in Sea Water Cooling Systems, Corrosion Reviews, 18, 429 (2000). Doi: https://doi.org/10.1515/CORRREV.2000.18.6.429   DOI
24 Z. S. Smialowska, Pitting Corrosion of metals, pp. 24, National Association of Corrosion Engineers, 1440 South Creep Drive, Houston, Texas 77084, USA, (1986).
25 I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683   DOI
26 D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, Prentice Hall, New Jersey (1996).
27 A. Garner, Thiosulfate Corrosion in Paper-Machine White Water, Corrosion, 41, 587 (1985). Doi: https://doi.org/10.5006/1.3582988   DOI
28 ASTM G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p. 3, ASTM International, West Conshohocken, PA, (2004).
29 ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, p. 7, ASTM International, West Conshohocken, PA (2004).
30 H. K. Hwang and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266   DOI
31 M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Valdecker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, Journal of Power Sources, 196, 8967 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.086   DOI
32 G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085   DOI
33 A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells:A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016   DOI