• Title/Summary/Keyword: Particle-swarm optimization

Search Result 719, Processing Time 0.03 seconds

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization (입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

Design of 2-D IIR Digital Filters Based on a Particle Swam Optimization (Particle Swarm Optimization을 이용한 2차원 IIR 디지털필터의 설계)

  • Lee, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1312-1320
    • /
    • 2009
  • This paper presents an efficient design method of 2-D infinite impulse response(IIR) digital filter based on a particle swarm optimization(PSO) algorithm. The design task is reformulated as a constrained minimization problem and is solved by our newly developed PSO algorithm. To ensure the stability of the designed 2-D IIR digital filters, a new stability strategy is embedded in the basic PSO algorithm. The superiority of the proposed method is demonstrated by several experiments. The results show that the approximation error of the resultant filters are better than those of the digital filters which designed by recently published filter design methods. The proposed design method can also obtain the stable2-D IIR digital filters.

Design of Fractional Order Controller Based on Particle Swarm Optimization

  • Cao, Jun-Yi;Cao, Bing-Gang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.775-781
    • /
    • 2006
  • An intelligent optimization method for designing Fractional Order PID(FOPID) controllers based on Particle Swarm Optimization(PSO) is presented in this paper. Fractional calculus can provide novel and higher performance extension for FOPID controllers. However, the difficulties of designing FOPID controllers increase, because FOPID controllers append derivative order and integral order in comparison with traditional PID controllers. To design the parameters of FOPID controllers, the enhanced PSO algorithms is adopted, which guarantee the particle position inside the defined search spaces with momentum factor. The optimization performance target is the weighted combination of ITAE and control input. The numerical realization of FOPID controllers uses the methods of Tustin operator and continued fraction expansion. Experimental results show the proposed design method can design effectively the parameters of FOPID controllers.

Data Mining Approach Using Practical Swarm Optimization (PSO) to Predicting Going Concern: Evidence from Iranian Companies

  • Salehi, Mahdi;Fard, Fezeh Zahedi
    • Journal of Distribution Science
    • /
    • v.11 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • Purpose - Going concern is one of fundamental concepts in accounting and auditing and sometimes the assessment of a company's going concern status that is a tough process. Various going concern prediction models' based on statistical and data mining methods help auditors and stakeholders suggested in the previous literature. Research design - This paper employs a data mining approach to prediction of going concern status of Iranian firms listed in Tehran Stock Exchange using Particle Swarm Optimization. To reach this goal, at the first step, we used the stepwise discriminant analysis it is selected the final variables from among of 42 variables and in the second stage; we applied a grid-search technique using 10-fold cross-validation to find out the optimal model. Results - The empirical tests show that the particle swarm optimization (PSO) model reached 99.92% and 99.28% accuracy rates for training and holdout data. Conclusions - The authors conclude that PSO model is applicable for prediction going concern of Iranian listed companies.

  • PDF

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization

  • Song, Hwa-Chang;Diolata, Ryan;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.185-193
    • /
    • 2009
  • This paper presents a methodology for photovoltaic (PV) system allocation in distribution systems using a discrete particle swarm optimization (DPSO). The PV allocation problem is in the category of mixed integer nonlinear programming and its formulation may include multi-valued dis-crete variables. Thus, the PSO requires a scheme to deal with multi-valued discrete variables. This paper introduces a novel multi-level quantization scheme using a sigmoid function for discrete particle swarm optimization. The technique is employed to a standard PSO architecture; the same velocity update equation as in continuous versions of PSO is used but the particle's positions are updated in an alternative manner. The set of multi-level quantization is defined as integer multiples of powers-of-two terms to efficiently approximate the sigmoid function in transforming a particle's position into discrete values. A comparison with a genetic algorithm (GA) is performed to verify the quality of the solutions obtained.

Optimal Power Scheduling in Multi-Microgrid System Using Particle Swarm Optimization

  • Pisei, Sen;Choi, Jin-Young;Lee, Won-Poong;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1329-1339
    • /
    • 2017
  • This paper presents the power scheduling of a multi-microgrid (MMG) system using an optimization technique called particle swarm optimization (PSO). The PSO technique has been shown to be most effective at solving the various problems of the economic dispatch (ED) in a power system. In addition, a new MMG system configuration is proposed in this paper, through which the optimal power flow is achieved. Both optimization and power trading methods within an MMG are studied. The results of implementing PSO in an MMG system for optimal power flow and cost minimization are obtained and compared with another attractive and efficient optimization technique called the genetic algorithm (GA). The comparison between these two effective methods provides very competitive results, and their operating costs also appear to be comparable. Finally, in this study, power scheduling and a power trading method are obtained using the MATLAB program.