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Photovoltaic System Allocation Using Discrete Particle Swarm
Optimization with Multi-level Quantization

Hwachang Song*, Ryan Diolata* and Young Hoon Joo*

Abstract — This paper presents a methodology for photovoltaic (PV) system allocation in distribution
systems using a discrete particle swarm optimization (DPSO). The PV allocation problem is in the
category of mixed integer nonlinear programming and its formulation may include multi-valued dis-
crete variables. Thus, the PSO requires a scheme to deal with multi-valued discrete variables. This pa-
per introduces a novel multi-level quantization scheme using a sigmoid function for discrete particle
swarm optimization. The technique is employed to a standard PSO architecture; the same velocity up-
date equation as in continuous versions of PSO is used but the particle’s positions are updated in an al-
ternative manner. The set of multi-level quantization is defined as integer multiples of powers-of-two
terms to efficiently approximate the sigmoid function in transforming a particle’s position into discrete
values. A comparison with a genetic algorithm {GA) is performed to verify the quality of the solutions
obtained.

Keywords: Multi-level quantization, Optimal allocation, Discrete particle swarm optimization, Photo-

voltaic systems

1. Introduction

Recent advances in photovoltaic (PV) technologies
have brought very promising opportunities for the utiliza-
tion of renewable solar energy systems. In [1], IEA re-
ported that in 2007 alone about 2.26 GW of PV capacity
were installed (an increase of more than 50% over the pre-
vious year) which brought the total installed capacity to 7.8
GW. Of the total capacity installed in 2007, about 95%
(2.16GW) were installed as grid connected systems. The
expected insertion and increasing penetration of grid con-
nected PV systems will modify the way in which the entire
system is planned and operated. This has raised many chal-
lenges for utility grid planners and operators.

The installation of PV systems at non-optimal places
have several uncertainties and this may cause operational
problems such as the violation of voltage limits and in-
crease in power losses, resulting in an increased opera-
tional cost. It is therefore essential for the utility operators
to investigate the technical and economic impacts of in-
stalling PV systems in their grid. In [2], Paatero et al. in-
vestigated the effect of large scale implementation of dis-
tributed PV generation in distribution networks. They
modeled three different network topologies and studied the
effect on voltage and power losses at different penetration
levels. Hernandez et al. in [3] presented a systematic ap-
proach for optimal location and sizing of PV systems in
distribution feeders. They followed a multi-objective opti-
mization approach which considers both the technical and
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economical aspects.

The optimal placement and sizing of PV systems in
distribution networks is a complex optimization problem. It
involves both discrete and continuous variables. Owing to
the discrete and discontinuous nature of the problem, clas-
sical techniques are rendered unsuitable and the use of a
global search technique is warranted. Recently, metaheuris-
tics optimization methods have been widely applied, espe-
cially in hard optimization problems involving continuous
and discrete variables.

In past years, particle swarm optimization (PSO) has
been successfully applied in many research and engineer-
ing areas. It is demonstrated that PSO provides better re-
sults in a faster, cheaper way compared with other global
optimization methods such as a genetic algorithm (GA) [4-
5]. The PSO was originally developed for nonlinear con-
tinuous optimization problems [6]; in the real world, how-
ever, many optimization problems are defined in discrete
value spaces where the domain of the solution space is
finite. It can be argued that with any problems, discrete or
continuous, variables can be transformed into its equivalent
binary representation [7].

In [8], the fathers of the PSO algorithm, Kennedy and
Eberhart, introduced the discrete binary PSO {(DBPSO)
when they reworked the original version in order to operate
on discrete binary variables. There has been some other
exploration of PSO techniques for discrete optimization.
Yang et al. [9] and Khanesar et al. [10] developed an algo-
rithm based on DBPSO which uses a different method to
update velocity. Pampara et al. [11] solved the binary opti-
mization problem using angle modulation with only four
parameters in continuous PSO, which allowed for faster
optimization of several problems. Inspired by natural evo-
lution, Sadri and Suen [12] extended the DBPSO by using
birth and death operations to model a dynamic swarm. Lee
et al. {13] modified the original DBPSO by adopting the
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concepts of genotype-phenotype representation and the
mutation operator of genetic algorithms. Rastegar et al.
[14] introduced another discrete binary PSO based on
learning automata. Multi-valued discrete particle swarm
has also been proposed in [7, 16] and tested on benchmark
problems. The algorithms reported above are limited only
to binary problems and are suitable for variables that can
take only three states 1, 0 and -1. Moreover, several con-
cerns over DBPSO are as follows: the range of the discrete
variable often does not match the upper limit of the binary
equivalent representation, the hamming distance between
two discrete values undergoes a nonlinear transformation
when an equivalent binary version is used, and the binary
representation increases the dimensions of the particle [7].
Parameters and the memory of DBPSO are some other
concerns as discussed by Khanesar et al. [10].

In this paper, a methodology for the optimal allocation
of photovoltaic systems in distribution systems is presented,
using a discrete PSO algorithm. The discrete PSO is modi-
fied from a standard PSO with linearly decreasing inertia
weight (PSO-LDIW) by the inclusion of a novel multi-
level quantization scheme. In order not to compromise the
robustness of the PSO algorithm, the same velocity update
equation that preserves the social and cognitive compo-
nents is used but the particle’s position is updated in an
alternative way. The variables are not converted into
equivalent binary representations. Instead, in this paper, a
multi-level quantization scheme is adopted which mainly
includes the approximation of a sigmoid function to trans-
form a particle’s position into discrete values. A compari-
son with a genetic algorithm (GA) is performed to verify
the quality of the solutions obtained by the discrete PSO-
LDIW. The versatility of this technique was shown by ap-
plying into other continuous PSO versions, such as repul-
sive particle swarm optimization (RPSO), and a PSO with
a constriction factor approach (PSO-CFA).

2. PV Allocation Problem Formulation

Assuming that the candidate buses are given for the in-
stallation of PV systems and that the maximum capacity of
PV systems to be installed at each bus is provided, repre-
sented as (AP-uy, APuyp, ..., AP-uy.), where ¢ denotes the
total number of candidate buses, and AP is the capacity of
a PV system considered and u,4, is the maximum integer
variable corresponding to the maximum capacity at bus m.
In this problem, it is important to determine the appropriate
number of units and the best locations in the given network.

To evaluate the operational improvement of the PV in-
stallation, active power losses can be taken as the perform-
ance index for the PV allocation planning problem. The
losses in the network branches can be calculated as the
difference of the injected power between the sending end
and the receiving end buses. The system loss then can be

described as follows:
b

f =ZP =>(r,-P,) (1)

m=1

where P, and P,,, denotes the injected active power from

the sending and receiving end, respectively, and b stands
for the total number of branches. The objective function is
minimizing f;.
The constraints considered in this paper are as follows:
® Equality constraints for nonlinear power flow equa-
tions: The power balance equation is included as an
equality constraint to ensure the balance between sup-
ply and demand. These constraints for bus m are pre-
sented as follows:
0=P, +AP u, —P,, —ij;]vﬂ-

mr @
(ij cosd,, + B, sinb,, )
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® Inequality constraint on voltage limits: Voltage levels at
the distribution buses should be within the established
limits to maintain power quality. This constraint is de-
scribed as follows:
ymn <y <y @
® Inequality constraint associated by the PV systems
penetration level: The maximum PV penetration level
should be smaller or equal to the specified amount. The
maximum PV penetration level can be set as a percent-
age of the total load. In this paper the maximum PV
penetration level is set to 80% of the total real power
load of the network. This constraint is now described as

follows:
PL < P -
P gix - ZSAP pvum

where the following notations are made: Pg,, is real power
generated at bus m; Pp,, is real power load at bus m; Qg is
reactive power generated at bus m; Op, is the reactive
power load at bus m; G,; and B, are the conductance and
susceptance for the (m, j) component from Y bus matrix;
6, is the voltage angle difference between bus m and j; V,,
and ¥; are voltage magnitudes of bus m and j, respectively;

ym=and y™ are the upper and lower limits for bus m,
respectively; P> and P, are the total injected power

and the specified penetration level of PV units, respec-
tively; AP, u, is the power injected of PV at bus m with

aunit number .

Equations (2) and (3) are the equality constraints for the
active and reactive power balance at each bus. In equation
(2), u,, is an integer variable for the number of PV units

that are installed at bus m, and u, =0,...,u,,- Voltage

deviation at each bus is restricted in the upper and lower
limit and described as an inequality constraint in (4). An-
other constraint included is the inequality constraint de-
scribed in (5) that limits the total penetration of PV power
by the specified P To force these constraints within the

limits, these two inequality constraints are converted into
the objective function as quadratic penalty terms for the



Hwachang Song, Ryan Diolata and Young Hoon Joo 187

application of simulation based optimization techniques
such as a PSO. Then, the augmented objective function can
now be described as:

minF = fi+a f, +a, f;

{0 PE < PI 6)

U Pl > Pl
( max _V )2 ( min )2
f3 mév " " mely
where oy and a, are the penalty factors against the solu-
tion’s violating the two inequality constraints; v and /v are
the sets of buses whose voltage magnitudes are violating
the upper and lower voltage limits, respectively. If the set
of buses exceeds beyond statutory voliage limits, in this
paper, they are penahzed by a very high value of a,(10%)
The parameter o; (10°) is the value introduced if the PV
penetration level exceeds beyond the maximum penetration
value. For this purpose, the injection violation index, f; is
employed. Normally, /> is set to 0 but it is set to 1 if

PL > P - This optimization problem is severcly nonlin-

ear due to the equality constraints of (2} and (3) and the
original objective function fj, which is said to be have
many local minima. Besides, the main variables of the
problem are integer as the penetration level of the PV sys-
tem at a candidate bus m is expressed by APuy,,.

/2

Il

I

3. Discrete Particle Swarm Optimization
Algorithms

3.1 Continuous PSO versions

A problem is given in the PSO architecture and a way
to evaluate a proposed solution to it exists in the form of a
fitness function. A communication structure or social net-
work is also defined, assigning neighbors for each individ-
ual to interact with. Then a population of individuals de-
fined as random guesses at the problem solutions are ini-
tialized. These individuals are candidate solutions, also
known as particles. As a single particle by itself is unable
to accomplish anything due to the fact power is an interac-
tive collaboration, an iterative process to improve these
candidate solutions needs to be set in motion. The particles
iteratively evaluate the fitness of the candidate solutions
and remember the location where they had their best suc-
cess. The individual’s best position corresponding to their
best solution is called the particle best or local best. Each

particle makes this information available to their neighbors.

Each particle has a memory and remembers the following
information: the particle’s best position, “pbesr”, where the
particle itself attained its best success, and the global best
position, “gbesr”, where its neighborhood or any particle in
the swarm attained the best success globally.

In every iteration, each particle moves from the current
position to the next by adjusting its own position and ve-
locity based on these two best positions. The particle posi-
tion and velocity update equations in the simplest form that

govern the PSO is given by equations (7) and (8) below:
VI = w V4 Con(Pp = XD+

| : M
CZ B (pgbest - Xz)

Xij - X:c 4 V{k+1 (8)

w=w, + (W, - w)- {%N} ©)

where X"/ represents the current position of the particle,
X/} is the previous particle’s position, V1 s the current
velocity of the particle, ¥/ is the previous velocity of the
particle. C; and C, are the acceleration coefficients while
#;, and r,are random numbers uniformly distributed in the
interval [0, 1]. pp’fbesl is the personal best position of the

particle, pee 18 the global best position of the swarm, w,
and w, stands for the initial and final value of inertia
weight respectively. #,,, 1s the maximum number of itera-
tions and 7 as the current iteration number.

The role of inertia weight w is considered to be very
important in PSO convergence behavior [18]. The inertia
weight is employed to control the momentum of the parti-
cle from the previous history of velocity on the current
velocity. The larger inertia weight facilitates global explo-
ration, while a smaller inertia weight tends to facilitate
local exploration. To ensure the search balance and to ac-
celerate convergence, a time-varying inertia weight, w, is
utilized and varies from 0.9 at the beginning to 0.4 toward
the end of optimization [18].

The early versions of PSO [6,17-19] were meant to
handle nonlinear continuous optimization problems. Many
numerical experiments, for example [4-5], proves that a
PSO can obtain high accuracy global optimal or quasi-
optimal solutions for continuous variable multimodal func-
tions and is superior to other meta-heuristic techniques like
simulated annealing (SA) and genetic algorithms (GA). It
is said that a PSO can be easily expanded to treat problems
with discrete variables {15, 20].

3.2 Previous discrete PSO versions

The discrete binary PSO (DBPSO) version was first re-
ported by Kennedy and Eberhart in [8]. The main concept
of the discrete binary PSO version is the same as the con-
tinuous one. The discrete binary PSO uses the same veloc-
ity update equation as in the continuous version, but the
values for the solution, X, (particle’s position) are trans-
formed into discrete binary value. In the discrete binary
PSO, the velocity functions as a probability that a bit (posi-
tion) takes on zero or one. The transformation of the veloc-
ity in the interval [0, 1] is accomplished using the sigmoid
function defined as:

ke 1
gV = 1+ exp(——wH ’

The position is then updated and defined by the follow-
ing rule [24];

o]

(10)

if ran() > sig(Vk“) (11
1 if ran() < sig(VF)
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where sig(V;**!) rtepresents the sigmoid limiting transfor-

mation and ran( ) is a random number generated with a
uniform distribution in the interval [0, 1].

It is noted that the inertia weight parameter in discrete
binary PSO has a value of 1 and hence this parameter has
no use for DBPSO convergence. The velocity term is also

limited to \Vikﬂ <Vv_ , where y_ is a value typically

close to 6.0 to correspond to a maximum probability of
0.9975 that a bit is flipped into 1, and a minimum probabil-
ity of 0.0025 that the bit remains 0.

There has been some other exploration of PSO tech-
niques for discrete optimization. Authors El-Dib et al. [9]
had applied the PSO technique for the VAR planning prob-
lem in power systems. In their scheme, sigmoid function
was also used for logical transformation sig(y**') to ac-

complish the particle’s motion. The change in position is
defined by the following rule:

Lif sigFh) > p

0if - p <sigW)<p (12)
~Lif sigF) < -p
where p is the user defined threshold value.

Using the concept of phasor, Moradi and Firuzabad [15]
proposed a ftrinary version of discrete PSO for switch
placement in distribution systems. In this algorithm, the
phase of V; is calculated and then it is mapped into one of
the three states. The three states are represented by unity
vectors with the angle of 0°, -120° and 120°. The angles of
the vectors are transformed into interval [0, 1] such as 1/6,
3/6, and 5/6. At each step, the phase difference of V; and
the three numbers are determined. The number, d,, is trans-
for- med using:

k+1
i -

a -exp(tan(7(0.5-d,))) (13)

)= 1+ o -expexp(tan(pi(0.5 - d,)))

where dj, is one of the distances (d;, d5, ds), and a is a con-
stant number for tuning up the convergence rate.

Using this transformation, when the distance approaches
zero, the transformed number is limited toward 1 or the
probability that the state to be selected is about 1 and when
the distance is about 0.34 the probability is 0. In fact, the
transformation equation in (13) is a modified sigmoid
transformation. This algorithm is more likely to be of the
one proposed in [5] and which is suitable only for three
states.

The algorithms mentioned above are suitable only for
variables that can take three states 1, 0 and -1 and limited
only to discrete problems with binary valued solution ele-
ments. In the real world, many problems are multi-valued
discrete problems. This algorithm may not be suitable for
problem types which include multi-valued discrete vari-

ables. If these algorithms are applied to the problem, the
movement of particles may only take a one step forward or
one step backward scheme. The limited movement (one
step forward - one step backward) scheme of particles may
slow down the search process or may even bring the algo-
rithm trap to a local minimum. The proposed multi-value
discrete transformation for the PSO is discussed in the next
section.

4. Multi-valued Quantization Scheme
for a Discrete PSO

4.1 Motivations

The discrete binary PSO has been able to optimize vari-
ous discrete-valued optimization problems. However, there
are several drawbacks associated with this algorithm: the
range of the discrete variable often does not match the limit
of the equivalent binary representation; the hamming dis-
tance between two discrete values undergoes a nonlinear
transformation when an equivalent binary representation is
used, which often adds complexity to the search process;
and the binary representation increases the dimension of
the particle [7]. Changes to the concept of particle trajec-
tory and velocity in the discrete binary PSO introduce an-
other concern. The parameter inertia weight is insignificant
and in some cases has difficulty tuning because the values
of w<1 prevents the convergence of the DBPSO and for
values -1<w<1, p*" becomes 0 over time [10].

Another parameter V. offers a different concept for
the DBPSO. In the continuous PSO version, a large value
for V,. encourages particle exploration, while in the
DBPSO a small value for V,,, promotes particle explora-
tion even if a good solution is found. If we examine equa-
tion (11) it can be observed that the next value for the bit is
dependent on the current value of that bit and the value is
updated using only the velocity vector. Thus, particle
memory is not good as it was in the continuous PSO ver-
sion. To resolve some of the problems associated with a
DBPSO, we have defined the multilevel quantization that
approximates the sigmoid function to transform a particle’s
position into multilevel discrete values. The new algorithm
can optimize multi-valued discrete optimization problems.

4.2 Multi-level quantization

Assuming the discrete variables in a multi-valued dis-
crete problem has range [0, N}, where N implies the num-
ber of N-array number system. To transform the position of
particles into a multi-value discrete number, first, we map
the values of velocity (Vi"+l ), with range [-Va, Vina), 10 @

hypercube with range [-1, 1] using the logistic function
equation in (14). Then, the set of array of the multilevel
discrete values is defined by the set of the quantization
level. The set of multilevel quantization is defined as inte-
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ger multiples of power of two that can be expressed as the
sums and differences of power-of-two terms [21].

S, = sig7F*) = 14— a9

k+1
1+ exp(_ i /gj

where ¢ is the steepness of the sigmoid function.

The important issue is how to set the ranges to repre-
sent the coefficients of / level of discrete value numbers.
First, we will identify the range of values that the particle
position will not move (X ko (Si) = 0) for the next step. To

set for this range, the power-of-two spaces’ is used. If the
value of S; is within the range of [-21, 21], the particle takes
no movement on the next iteration. For the succeeding
steps, the coefficients (n) of discrete values at /-th level are
defined by the ranges expressed as the sums and differ-
ences of powers-of-two terms. The multilevel approxima-
tion of the sigmoid function is shown in Fig. 1.

The steepness function ¢ can be adjusted to vary the
values of ranges of S;, and in this study ¢ is set to 1. The
new position update of the particle is defined by the fol-
lowing rule:

X +n, -1+27 <,
Xf 4+, —1+27 <S5 <1270
: (15)
Xs)=4  x* —2'<s <2

Xi-1l,  —1+4270- <8 <1427

X! —n, S, <-1+27"
where 7 is the discrete maximum value of velocity for the

i-th variable, X, of a particle.
4.3 Particle velocity

In the DBPSO, the velocity term indicates the prob-
abilities of solution elements that assume the value of 0 or
1 and the parameter inertia weight has no function or con-
tribution for the algorithm’s convergence. In our algorithm,
the significance of the velocity variable and its parameters,
the meaning of velocity clamping and the inertia weight,
follows exactly the standard continuous PSO version. In
fact, inertia weight has some valuable information about
the previously found directions.

As in the continuous version, a large value of velocity
(7/+1) results in a random search, where the particle will

take a large step size in just a single iteration. For example,
if the value of p**! is large the particle will encourage

more exploration while in the DBPSO a smaller value may
promote more exploration even if a good solution is found.
Also, a large amount of maximum velocity, V..., encour-
ages more exploration and a lesser value causes the particle
to move less. When a particle is approaching a region of
good solution, this means that a particle’s velocity is ap-

proaching zero and the particle’s step in discrete value is
also less.

1.0
127
1-27

Vi o Vo

_ol

—1+27
¥1+27(1+1)
“1-1.0

Fig. 1. Multi-level quantization with a sigmoid function

Pertaining to the position updating rule of the DBPSO,
the movement of a particle at the current step is independ-
ently performed from that at the previous step. When the
particle’s velocity approaches 0, then, the search at the next
iteration tends to be changed into a pure random search.
This might cause a loss of information on the previously
found good positions. In our algorithm, the position update
uses the previous position information, and the social and
cognitive component is preserved. Furthermore, the inertia
term is used to maintain the previous direction of the parti-
cle to the personal best or global best positions.

5. Simulation Results and Discussions
5.1 Numerical setup

To verify the feasibility of the proposed technique, the
PSO-LDIW combined with the proposed multilevel quanti-
zation is applied to the PV allocation optimization problem.
The PV allocation problem is formulated as an integer
nonlinear optimization problem. An IEEE-37 bus distribu-
tion system was utilized as the test system. The topology
and complete data of the test network can be found in [19].
The system’s total real and reactive power loads are 8§14
kW and 406 kVAr, respectively, with real and reactive
power generation of 838.179 kW and 422.421 kVAr re-
spectively at the slack bus. The system’s total real power
loss before PV integration is 0.125881 pu. In this simula-
tion, two cases employing different problem dimensions
where simulated. The cases are described as follows:
® C(Case 1: This case is a strategic allocation of PV systems.

The candidate buses are selected based on the initial

evaluation of power flow from which buses with the

lowest voltage magnitudes are chosen as candidates for
installation. The goal of this case is not just to mini-
mize the losses but also to provide voltage support.
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® Case 2: In this case all buses except bus 1 are chosen as
candidates for installation. The aim of this case is to re-
lieve the loads in distribution lines and to intensively
reduce line losses.

In both cases, the position (bus location) and sizes of
the PV units are chosen as decision variables. Each PV unit
is assumed to constantly deliver 10 kW of peak power of
which the power factor is assumed to be unity. In both
cases the maximum penctration level is set as 80% of the
total real power load. The algorithm’s parameter settings
are shown in Table 1. In this study, four levels of quantiza-
tion are applied and hence the maximum discrete value, #,
in (15) is 3. The proposed multilevel quantization is also
applied to the RPSO [23-24] and PSO-CFA [19] to show
that the proposed technique can be applied to any continu-
ous PSO algorithm.

Table 1. PSOs and GA parameters

C] C2 C3 K Wmax Wmax Jif mut P Cross
LDIW 20 2.0 - - 0.9 0.9 - -

CFA 28 13 - 0729 - - - -
RPSO 15 -1.5 05 - 0.7 001 - -
GA - - - - - - 0.0l 0.8

To show the quality of the solutions obtained by the
PSO algorithms, a comparison using a GA is made. GAs
have been reported to produce a good solution for discrete
variable problems. In this paper, the GA uses the following
scheme: real coding process, proportional selection, elitist
model, two-point crossover, uniform mutation with 0.01
probability, and a crossover probability of 80%. A GA with
two-point crossover can better handle problems with long
blocks of parent vector swapped in their entirety into the
child [8].

5.2 Case 1

Case 1 is a problem with a lower dimension wherein
only eight candidate buses and 10 different sizes (discrete
values) of PV units available as choices for each bus. The
performance of the heuristic algorithm must be concluded
only after many trials. To verify efficiency, 50 independent
runs are simulated for each algorithm. For each separate
run, the particles are initialized in random positions. A
maximum number of iteration (ifery., = 100) is used as the
stopping criterion for each algorithm.

The standard deviation, average, worst and best values
of the final solutions of different algorithms for case 1 are
shown in Table 2. The PSO-LDIW combined with the pro-
posed multilevel quantization technique has obtained
higher quality solutions compared to the GA and the two
other PSO algorithms. For all categories, including stan-
dard deviation, averages and worst and best values, the
PSO-LDIW employed in conjunction with multilevel quan-
tization achieves the lowest values. Note that the variation
on the objective function, especially on power loss, is
minimal for the following reasons: there are only a few
selected candidate buses for installation, and the distances
between each of the candidate buses are relatively small.

Table 2. Performances of the four algorithms for Case 1

Objective function value

Average Worst Best Std. dev.

GA 0.0513785  0.0519725  0.0511500  0.000169
PSO-LDIW  0.0511366  0.0511993  0.0511099  0.000025
PSO-CFA 0.0511673  0.0514618  0.0511107  0.000064
RPSO 0.0512091  0.0514349  0.0511147  0.000073

To show the convergence process of the four algorithms
considered, another set up is made. For all considered algo-
rithms, particles are randomly initialized in the same distri-
butions. Fig. 2 illustrates the comparison of the perform-
ances according to iterations of the algorithms considered.

PSO-LDMW ------ PSO-CFA -—--RPSO —--—-GA

Objective function value

Iteration

Fig. 2. Comparison of the four algorithms for Case 1

The PSO-LDIW and PSO-CFA have converged in al-
most the same optimal solution. It appears that the discrete
PSO algorithms with the proposed multilevel quantization
converge faster compared with the GA and can locate a
good quality solution in fewer iterations. Moreover, the
PSO-LDIW is far superior compared to other algorithms
considered.

5.3 Case 2

To investigate the effect of dimension on the searching
quality of a PSO-LDIW combined with multilevel quanti-
zation, the number of candidate buses is increased using
the same distribution test system. In this case, all load
buses are chosen as candidates for installation and the
penetration level is set as a constant. By choosing all load
buses as candidates for installation, the power loss will
vary considerably. This will result in the creation of many
multiple minima in the region and is very difficult to opti-
mize due to the restriction in voltages and the degree of PV
penetration.

The standard deviation, average, worst and best values
of the final solutions of different algorithms for case 2 are
shown in Table 3. The PSO-LDIW employed with multi-
level quantization achieves the lowest values for all catego-
ries (standard deviation, average, worst and best values)
even in high dimensional problem. We can see from the
result that GA and RPSO are finding difficulties in finding
a good solution. In fact, there are many trial runs that the
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GA and RPSO algorithms failed to find a solution.

Table 3. Performances of the four algorithms for Case 2

Objective function value

Average Worst Best Std. dev.
GA 20000.03 1000000  0.0254504  141421.356
PSO-LDIW 0.02501 0.027516  0.0239057  0.000790
PSO-CFA 20000.02 1000000 0.0239694  141421.352
RPSO 660000 1000000 0.0256233 478518.1

Fig. 3 shows the illustration of performances according
to iterations of the GA and PSO algorithms combined with
the proposed technique. All three PSO algorithms com-
bined with the proposed technique converge faster in a
lower value of solution compared to the GA. The GA’s
stairway-like characteristic graph shows the GA falling in
local minima, and it takes extensive iterations in order to
escape from that local minima. It also shows that the PSO-
LDIW and PSO-CFA combined with the proposed multi-
level quantization technique easily on escapes local min-
ima and are very robust in finding global or quasi-global
solutions. In general, the PSO-CFA has shown a compara-
ble performance with the PSO-LDIW while the GA and
RPSO had difficulties falling from local minima.
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Fig. 3. Comparison of the four algorithms for Case 2

5.4 Discussions

Furthermore, the final solution is recorded for every
separate run. If the final solution of each individual run is
within the range of 0.1% of the global optimal value, we
call it as a successful run. This range is chosen as very low
because, for case 1, the deviation of the objective function
is small. Since the global optimal value of the problem is
unknown, in this case we define the lowest optimal solu-
tion amongst the four algorithms as the global optimum.
We then evaluate the index named ‘success rate (SR)’ de-
fined as follows:

N
SR ="~ x 100% (16)
tr
where N, (N, =50} denotes the total number of runs and
N, denotes the number of successful runs among 50 inde-
pendent runs.

The result for robustness analysis is shown in Table 4.
All three different PSO algorithms combined with the pro-
posed multilevel quantization technique achieved a 100%
success rate while the GA has only 90%. This simply
shows that PSO algorithms applied with the proposed
technique have a very high probability of finding global or
quasi-global solutions.

Table 4. Result of Robustness Analysis

Success rate (%)

Case 1 Case 2
GA 90.0 8.0
PSO-LDIW 100.0 96.0
PSO-CFA 100.0 92.0
RPSO 100.0 4.0

As can be seen in Table 4, if the final solution of each
individual run for Case 2 is within the range of 1% of the
global optimal value (the lowest optimal solution amongst
the four algorithms), we consider it to be a successful run.
A PSO-LDIW combined with the proposed multilevel
quantization can find global optima with very high prob-
ability, even in higher dimensional problems. In fact, in all
50 trial runs the PSO-LDIW combined with the proposed
technique found a solution, and only in a few cases did it
fail to find a global or quasi-global solution. On the other
hand, a PSO-CFA with multi-level quantization has a
higher success rate, compared to GA and RPSO, but the
average value and standard deviation of objective function
values obtained is rather high. The poor performance of the
RPSO may be caused by the loss of particle information on
the global best position, which is crucial information for
population based optimization techniques. The high values
on the average and standard deviation are caused in some
cases when the algorithm fails to find a solution.

Computational efficiency analysis is also carried out
based on CPU computational time. Each individual algo-
rithm was separately run for 50 trials with a fixed number
of iterations, and in this case the maximum iteration is set
to 100. The average CPU time to complete the fixed num-
ber of iterations is shown in Table 5. The PSO-LDIW com-
bined with the proposed multilevel quantization achieved
the lowest CPU computational time in two cases. The GA,
on the other hand, has the highest CPU computational rate
among the algorithms considered. The added computa-
tional burden for the GA is due to the fact its operators like
mutation, crossover and selection. In general, the PSO-
LDIW combined with the proposed multilevel quantization
outperformed the GA and the two other PSO versions
(RPSO and PSO-CFA) combined with the proposed multi-
level quantization.

Table 5. Average CPU computational time

Average time (ms)

Case 1 Case 2
GA 32799.58 32864.90
PSO-LDIW 32437.78 32397.66
PSO-CFA 32514.86 32751.82
RPSO 32475.52 32647.76
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6. Conclusions

This paper presents a new technique for the PV alloca-
tion problem using a discrete PSO. The proposed discrete
PSO includes a novel quantization scheme to handle multi-
valued discrete variables in the mixed integer nonlinear
programming problem. The multilevel quantization scheme
maps a set of continuous values representing each parti-
cle’s position into discrete values using integer multiples of
powers-of-two terms in the sigmoid function. The new
technique was applied to a PSO-LDIW algorithm as well
as the two other continuous PSO versions (RPSO and PSO-
CFA), and they are applied to the PV system allocation
problem. Using the IEEE 37 bus distribution test system,
two cases with different problem dimensions were em-
ployed and simulated. From these results, one can see that
a PSO-LDIW applied with the proposed quantization tech-
nique could better handle multi-valued discrete problems
as compared with the two other continuous PSO versions
and GA. Also, it shows that the PSO-LDIW and PSO-CFA
employed with the quantization scheme could have a very
high probability of finding a global optimum and provide a
better quality solution even in high dimensional problems,
compared to a GA.
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