• Title/Summary/Keyword: Particle-induced X-ray emission (PIXE)

Search Result 16, Processing Time 0.024 seconds

Setup and Atomic Calibration of Particle Induced X-ray Emission System

  • Song, Jin-Ho;Song, Jae-Bong;;Kim, Jun-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.206.2-206.2
    • /
    • 2014
  • Recently, particle induced X-ray emission (PIXE) analysis system was installed at the 2MV ion acceleration system in Korea institute science and technology (KIST). This installation is for complement to low atomic resolution of heavy atoms at Rutherford backscattering spectrometry (RBS) system. For quantitative analysis, a mass calibration of the PIXE set-up has been done with thin film standards and. The GUPIX software package has been used to process the PIXE spectra and the results are compared with the values from RBS system. Therefore, the instrumental constant H (solid angle and correction factor) is determined relying completely on the GUPIX data base (cross-sections, fluorescence and Coster-Kronig probabilities, stopping powers and attenuation coefficients) for a large set of elements. These H values can be used in future analysis.

  • PDF

Oprimization Study for the CRC PIXE System Beam Transport Line

  • Jeong, Cheol-Ki;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Proton Induced X-ray Emission (PIXE) is a MeV ion beam analysis method for use with particle accelerators. PIXE uses low-energy charged particles as an excitation mechanism to generate characteristic x-ray emission from each element in a target. In PIXE analysis, the beam current used is from a few nA to several tens of nA. Chosun University (Cyclotron Research Center) designed a $50{\mu}A$ beam line from the 13 MeV cyclotron for use with a PIXE analysis system, as well as performing beam transport line optimization research. In this study, the beam line operation conditions for the optimization process of beam transport and beam characteristics are shown.

Investigation of trace elements in incisor and molar teeth from two different geographical areas in Sudan using micro-particle induced x-ray emission (µ-PIXE)

  • M.E.M. Eisa;J.A. Mars;S. Naidoo;R.A. Shibrain;K.J. Cloete;M. Maaza
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2023
  • Trace elements (TEs) have significant effects on both dental health and human health. Toxic effects are caused by deficiency or excess of TEs. This study was performed to determine levels of toxic and trace elements in incisor and molar teeth sampled from male and female participants residing in the north and south regions of Sudan. The tooth enamel of 18 extracted human teeth was analyzed using particle-induced x-ray emission (µ-PIXE) to determine its elemental profile and distribution. GeoPIXEII software package was used for the analysis of µ-PIXE data. The main elements determined were Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Zn, Co, and Sr which were homogeneously distributed in the areas of the tooth enamel mapped with micro-PIXE.

Chemical Properties of the Individual Asian Dust Particles Clarified by Micro-PIXE Analytical System

  • Ma, Chang-Jin;Kang, Gong-Unn;Kasahara, Mikio;Tohno, Susumu
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.154-161
    • /
    • 2014
  • The present study was undertaken to evaluate the chemical characteristics of Asian dust (hereafter called "AD") particles with the aid of the most advanced micro-PIXE (Particle-induced X-ray emission) analytical technique. To this end, size-selected particles were sampled on a rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD and non-AD periods in 2004. The coarse particle (> $2{\mu}m$) number density during an AD event were 170 times higher than those of the non-AD counterpart. The average net-count of silica in individual particles collected on AD event was roughly 11 times higher than that of non-AD counterpart. The X-ray net-counts of trace elements (Zn, Co, Mn, and V) were also considerably high in AD relative to the non-AD day. Particle classification based on the inter ratio analysis of elemental net-count suggests that a large portion of the coarse particles collected during AD event underwent chemical transformation to a certain degree. The visual interpretation of micro-PIXE elemental maps and elemental localization data in and/or on individual AD particles clarified the internal mixture of AD particles with sea-salt and artificial metallic particles.

A Seasonal Variation of Elemental Composition of Fine Particles in Chongju Area using PIXE (PIXE를 이용한 청주지역 미세입자 중 원소의 계절 변동 특성)

  • 강병욱;이학성;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.307-317
    • /
    • 1997
  • Samples of fine particle $(d_P<2.5 \mum)$ were taken in Chongju area using a dichotomous sampler. The data set was collected on fifty-eight different days with 24 hour sampling period from October 27, 1995 through August 25, 1996. The samples were analyzed using a proton induced x-ray emission (PIXE) for Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, M, Fe, Ni, Cu, Zn, Br and Pb. Values of Fe, Ca, Si, Cu, K and Cl exhibit marked seasonal variations. Mean concentrations for this study had the following order S > Cl > Si > K > Al > Fe on fine particle. Concentrations of Ca, Si and Fe were higher during the spring season compared with any other season. These phenomena may be attributable to soil dust. Cl and K were higher in the winter, which may be explained by combustion of fossil fuel. Higher values for Cu and Zn in the Winter may be due to the combustion and incineration.

  • PDF

Preparation and C-V characteristics of $Y_2O_3-StabilzedZrO_2$ Thin Films by PE MO CVD (플라즈마 화학 증착법에 의한 $Y_2O_3-StabilzedZrO_2$박막의 제조와 Capacitance-Voltage특성)

  • Choe, Hu-Rak;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.510-515
    • /
    • 1994
  • Yttria-stabilized zirconia(YSZ) films were prepared onto p-type (100) silicon wafer by a plasma-enhanced metallorganic chemical vapor deposition(PE MO CVD) processing involving the application of vapor mixture of tri(2.2.6.6-tetramethyl-3, 5-heptanate) yttrium$[Y(DPM)_3]$, zirconiumtriflouracethyla cetonate$(Zr(tfacac)_4$ and oxygen gas. The x-ray diffraction(XRD) and fourier transform infrared spectra(FT1R) results showed that the deposited YSZ films had a single cubic phase. $Y_2O_3$ content of YSZ film was analyzed by PIXE(partic1e induced x-ray emission). The experimental results by PIXE revealed that 12.lmol%, 20.4mol% and 31.6mol% $Y_2O_3$ could be obtained as the $Y(DPM)_3$ bubbling temperature varied at $160^{\circ}C, 165^{\circ}C$ and $170^{\circ}C$ respectively. The increase of $Y(DPM)_3$ bubbling temperature caused shifting flat band voltage to have a negative value.

  • PDF

A Preliminary Study on a Method for the Morphological and Quantitative Analyses of Individual Snow Crystals and Its Application for Field Measurement

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.196-203
    • /
    • 2011
  • The main aim of this study is to establish methods of morphological preservation and elemental quantification for individual snow crystals. Individual snow crystals were collected at a height of 20 m above ground level. To stabilize and preserve the original morphologies of the snow crystals, cyanoacrylate, which has been used to fix liquid droplets, was applied (Kasahara et al., 2000). Several different kinds of snow crystals (dendrite, sectored plate, quasi-sectored plate, and hexagonal plate) were successively stabilized using this method. The stabilized snow crystals were pretreated with acetone, and then the elemental components contained in a whole snow crystal were quantified with the Particle Induced X-ray Emission (PIXE) analytical technique. The snow crystal residual composition determined in the present study was dominated by sulfur and mineral components, and the elemental mass showed an apparent crystal size dependence, where the elemental mass gradually decreased as the crystal size increased.

Interpretation of the Chemical Transformation of Individual Asian Dust Particles Collected on the Western Coast of Korean Peninsula

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2012
  • This paper is focused on the comprehensive and detailed interpretation for the chemical transformation of individual Asian dust (hereafter called "AD") particles during long-range transport from source regions to receptor area. A multi-stage particle sampler was operated at a ground-based site in Taean, Korea directly exposed to the outflow of air masses from China during AD period in April 2003. Both quantitative and qualitative analyses for size-classified individual particles were carried out by a microbeam X-ray fluorescence (XRF) method and a microbeam Particle Induced X-ray Emission (micro-PIXE), respectively. Among major characteristic elements, the elemental masses of soil derived components, sulfur, and chloride varied as a function of particle size showing the monomodal maximum with a steeply increasing at 3.3-4.7 ${\mu}m$ particle size. Although the details on chemical composition of AD particle collected on a straight line from source area to our ground-based site are needed, a large amount of Cl coexisted in and/or on AD particles suggests that AD particles collected in the present study might be actively engaged in chemical transformation by sea-salt and other Cl containing pollutants emitted from the China's domestic sources. Through the statistical analyses it was possible to classify individual AD particles into six distinct groups. The internally mixed AD particles with Cl, which has various sources (e.g., sea-salt, coal combustion origin HCl, gaseous HCl derived from the adsorption of acids to sea-salt, and Cl containing man-made particles) were thoroughly fractionated by the elemental spectra drivened by the double detector system of micro-PIXE.

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.