• 제목/요약/키워드: Particle-in-cell method

검색결과 250건 처리시간 0.029초

열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구 (Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC)

  • 박광연;임탁형;이승복;박석주;송락현;신동렬
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가 (Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application)

  • 김득주;황해영;김세종;홍영택;김형준;임태훈;남상용
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.42-50
    • /
    • 2011
  • The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

폴리올 공정 제어에 의한 탄소기반 나노 Pt 촉매 담지 특성 평가 (Electrochemical Catalysts Test for Nano Pt Particles on Carbon Support Synthesized by a Polyol Process Parameter Control )

  • 문채린;배진우;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.164-169
    • /
    • 2023
  • Nano Pt particles were dispersed on carbon-based supports by a polyol process for a catalyst application in a polymer electrolyte fuel cell. We tried to optimize the effect of pH on the electrostatic forces between the support and the Pt colloids. We investigated the relationship among the surface charges on the carbon support, the solution pH, and the concentration of a glycolate, and the Pt particle size. The produced catalyst with nano Pt particles on the support was evaluated by the long-term cyclic voltammetry (CV) performance test and compared with the results from a commercial catalyst. Our experimental results reveal that the pH-control can modify the particle size distribution and the dispersion of the nano Pt particles. This resulted in a cost-effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells better than a commercial catalyst system.

무요소법에서 절점 적분의 개선방안 (Improvement Scheme of Nodal Integration in Meshless Method)

  • 임장근;송태한;석병호
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1376-1383
    • /
    • 2001
  • Meshless methods, developed in various ways over the past decade, have been attractive as new computational methods in that they do not need mesh generation in analyzing procedure. But most of these methods were not truly meshless methods because background meshes were required for the spatial integration of a weak form. Accordingly, in this paper, nodal integration for truly meshless methods has been studied, and an improvement scheme is proposed. To improve stabilization and accuracy, which are the weak points in previous nodal integration methods, the integration area is transformed to circle and then numerically integrated. This method does not need any adding term for stabilization in the variational formulation and then simplifies the integration procedure. Numerical test results show that the proposed method is more accurate, stable, and reasonable than the existed nodal integration methods.

Fabrication of Luminescent Hydroxyapatite Microspheres for Drug Loading and Release

  • Park, So Yeon;Kwon, Seung Lee;Baek, Mi Yeon;Yoo, Jin Sun;Kim, Min-Cheol;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.360.1-360.1
    • /
    • 2016
  • Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) particles have attracted a great deal of attention in biomedical fields due to their good biocompatibility, bioactivity and fairly broad applications as drug delivery, dental implant, bone cement, and etc. Thus, many researchers have made an effort to add new functionalities such as luminescence, drug delivery, and bone regeneration properties up to HAP powders by controlling their nanostructure as well as composition. In this research, the mesoporous strontium substituted HAP (Sr-HAP) microspheres were synthesized using a hydrothermal method. In this synthesis, aspartic acid monomers were utilized to form microsphere by controlling surface energy of HAP particles and Sr ions were substituted into Ca ion sites, which induced luminescence property in HAP powders. Moreover, the change in the amount of Sr substitution was found to influence the particle size, morphology, and concurrently surface area, which led to changing drug loading as well as drug release property. The amount of Sr influences the morphology, luminescent properties, particle size, surface area cell viability and drug loading property, which are investigated by SEM, TEM, XRD, FTIR, BET, XPS and in vitro test such as MTT assay and drug release test. In particular, the multifunctional Sr-HAP with molar ratios of 0.25 (Sr/(Ca+Sr)) possessed the strongest luminescent property as well as the superior drug loading and sustained release properties that were correspondent with large surface area and pore size. Our study indicates that the fabricated multifunctional Sr-HAP microspheres are quite useful for bone regeneration and drug delivery.

  • PDF

코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지 (Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process)

  • 정홍인;유종렬;박성호
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.111-117
    • /
    • 2019
  • 기상으로 전달된 Ti 전구체가 열 플라즈마에서 고순도의 결정질 코어-$TiO_2$로 합성됨과 동시에 기판에 바로 증착시킬 수 있는 공정을 제시한다. 제조된 코어-$TiO_2$는 외부에 노출되지 않는 상태에서 원자층증착법(Atomic Layer Deposition, ALD)에 의하여 $Al_2O_3$로 코팅된다. 코어-$TiO_2$와 코팅된 쉘-$Al_2O_3$의 형태학적 특징은 transmission electron microscope (TEM) 및 transmission electron microscope - energy dispersive spectroscopy (TEM-EDS)를 통해 분석하였다. 제조된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자의 전기적 특성은 염료감응 태양전지(dye-sensitized solar cell, DSSC)의 작동전극에 적용하여 평가하였다. Dynamic light scattering system (DLS), scanning electron microscope (SEM), X-ray Diffraction (XRD)을 통하여 코어-$TiO_2$의 평균입도, 성장속도 및 결정구조의 무게분율을 분석한 결과, 평균입도는 17.1 nm, 코어박막의 두께는 $20.1{\mu}m$이고 주 결정구조가 Anatase로 증착된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자를 적용한 DSSC가 기존의 페이스트 방식으로 제작한 DSSC보다 더 높은 광효율을 보여준다. 기존의 페이스트방식을 활용한 DSSC의 에너지변환효율 4.99%에 비하여 선택적으로 조절된 코어-$TiO_2$/쉘-$Al_2O_3$ 나노입자를 작동전극으로 사용한 경우가 6.28%로 26.1% 더 높은 광효율을 보여준다.

고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구 (Development of a Durable Startup Procedure for PEMFCs)

  • 김재홍;조유연;장종현;김형준;임태훈;오인환;조은애
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF

Green Synthesis of Silver Nanoparticles Using Cell Extracts of Anabaena doliolum and Screening of Its Antibacterial and Antitumor Activity

  • Singh, Garvita;Babele, Piyoosh K.;Shahi, Shailesh K.;Sinha, Rajeshwar P.;Tyagi, Madhu B.;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1354-1367
    • /
    • 2014
  • In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEM-selected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag-CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

$Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성 (Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte)

  • 윤희성;노의범;김병호
    • 한국세라믹학회지
    • /
    • 제35권9호
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

메탄올 환원법에 의한 연료전지용 백금담지 전극제조 -촉매담지시 계면활성제 첨가와 열처리 온도 효과- (Preparation of Fuel Cell Electrode Impregnated Platinum by Methanol Reduction Method -Effect of Surfactant and Heat Treatment at Pt Impregnation-)

  • 정윤이;유덕영;은영찬;이주성
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.16-22
    • /
    • 1997
  • 메탄올에 의해 백금을 환원시켜 carbon상에 담지할 때 계면활성제의 첨가가 환원된 백금 colloid의 안정화에 큰 영향을 미치며 계면활성제의 첨가량이 증가할수록 백금 colloid의 안정성이 증가하여 백금을 미립화하여 carbon상에 담지할 수 있었다. 그러나 계면활성제의 양이 증가할수록 열처리 후 잔존하는 계면활성제 잔유물이 전극 내에서 불순물로 작용하여 산소환원 성능은 감소하였다. 계면활성제 제거를 위해 열처리 온도를 증가시킬수록 백금의 응집현상이 크게 증가하여 백금의 입자 크기가 증가하여 전류밀도는 감소하였다.

  • PDF