• Title/Summary/Keyword: Particle-free

Search Result 608, Processing Time 0.024 seconds

Breakdown Characteristics of Mixtures of $SF_6$ and Dry air under Uniform and Nonuniform Electric Field ($SF_6$와 Dry air가 혼합된 가스의 평등/불평등 전계에 의한 절연파괴특성 연구)

  • Lee, Sang-Hwa;Jung, Hyun-Jae;Jeong, Seung-Young;Ryu, Cheol-Hwi;Bang, Hang-Kwon;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1502-1504
    • /
    • 2006
  • 본 연구는 $SF_6$와 Dry-air(건조공기)가 혼합된 절연매체의 절연 특성과 부분방전 특성 연구를 위하여 기초실험용 쳄버와 70kV급 GIS mock up 을 이용하여 교류전압을 인가하여 실험이 수행되었다. 전자의 경우, Sphere gap 및 Needle/Plate 전극시스템을 이용하여 순수 $SF_6$가스와 Dry-air의 절연내력을 비교하고, 챔버의 압력을 5기압으로 유지한 상태에서 Dry-air와 $SF_6$가스의 혼합비를 변화시키면서 절연내력이 측정되었다. 후자의 경우, 기초실험에서 도출된 $SF_6$가스와 Dry-air의 최적의 혼합비율을 선택한 후, 방전 개시전압과 부분방전 양상을 순수 $SF_6$가스의 결과와 비교 분석하기 위한 실험을 수행하였다. 이를 위하여 GIS 사고의 주요원인이 되는 결함들, 즉 Protrusion, Floating, Free moving particle 들을 인위적으로 모의하여 Mock up 내부에 설치하고 내부 압력을 5기압으로 유지한 상태에서 수행되었다. 전자의 경우, $0.5{\sim}5$ 기압 범위내 에서 Dry-air 압력을 변화시켰을 때 절연내력은 전극시스템에 무관하게 순수 $SF_6$가스의 결과치의 $40{\sim}50%$정도이다. 또한 챔버 압력이 5기압일 경우, Needle/Plate 전극을 이용했을 경우, Dry-air 가 80% 혼합된 절연매체는 순수 $SF_6$가스 절연내력의 80%정도이다. 후자의 경우, 인가전압을 고정 시켰을 때, 부분방전 패턴과 방전크기는, 순수 $SF_6$가스와 Dry-air 가 80% 혼합된 절연매체는 동일한 패턴과 방전크기를 나타내고 있다. 이러한 결과를 근거로, 가스 압력이 5기압에서 운전되는 전력기기의 절연 매체로서 혼합가스를 사용할 경우, $SF_6$가스와 Dry-air의 혼합비는 2:8정도가 적절한 것으로 제안한다.

  • PDF

Preparation of Silver/Polystyrene Beads via in Sito Reduction of Silver Alkylcarbamate Complex (은 알킬카바메이트 복합체의 환원에 의한 은/폴리스티렌 비드의 제조)

  • Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • Monodisperse polystyrene and its copolymer beads containing amine function were prepared for the electroless silver plating using reduction of silver alkylcarbamate complex in organic solvent. Soap-free emulsion polymerization was adopted for the polymerization of styrene, divinylbenzene (DVB), and 2-(N,N-dimethylamino) ethyl methacrylate (DAEMA) in the presence of poly (vinyl alcohol) in a water/methanol solvent. The resulting poly (styrene/DVB/DAEMA), containing 30/0$\sim$1.5/0$\sim$3 wt% in monomer composition, were found to be a sphere-type particle with diameter of 1 ${\mu}m$. Silver Ag-coated polystyrene beads were prepared by in sito reduction of a silver 2-ethylhexylcarbamate (Ag-EHCB) complex solution with hydrazine without pretreatment of polystyrene beads. Robust Ag/polystyrene beads were analyzed by SEM, UV -visible spectrometer and XRD.

Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder (고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작)

  • Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

Mechanical Properties on Vegetable Oil based eco-friendly Stainless Steel Coatings (식물성오일 기반의 친환경 스테인레스 스틸 코팅에 대한 기계적 특성)

  • Kim, Ki-Jun;Sung, Wan-Mo;Kim, Joo-Han;Jung, Hyung-Hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.851-856
    • /
    • 2017
  • The mechanical properties of coating resin on stainless steel were measured by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly coating resin, we have synthesized the solvent-free coating resin to be coating on metals such as stainless steel. The properties of the synthesized coating resin to be contained polyols, MDI, silicone surfactant, fillers and vegetable oil(castor oil), that they have highly stronger in intensity and longer durability than general coating resin of polyurethane resin on stainless steel. The rigid segments of polyurethane in mechanical properties of coatings were due to unsaturated vegetable oil and the increase mole % of [NCO/OH]. In conclusion, the coating microstructure with castor oil can be good material for coatings of anticorrosion of metal substrates such as stainless steel.

PIV Measurement of Viscous Flow Field in the Wake of Transom Stern (PIV기법을 이용한 트랜섬 선미 후류 점성유동장 계측)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.805-810
    • /
    • 2011
  • An experiment was carried out to figure out the instantaneous flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at $Re=3.5{\times}103$, $Re=7.0{\times}103$. The stern angles of models were learning at $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively based on the survey results of real ships. The depth of wetted surface is 40mm from free surface. As Reynolds number increases, vortices increase in volume and move their way to the downstream. Flow separation appeared at the end of model's bottom.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Effect of Alloy Elements on Galvannealed Coating Quality in IF High Strength Steels (IF 고강도 합금화 용융아연도금강판의 표면품질에 미치는 합금원소의 영향)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Shin, Kwang-Soo;Sohn, Ho-Sang;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.289-295
    • /
    • 2008
  • The effect of the alloy elements(Si/Mn) ratio on the coating quality including wettabilty with molten zinc, galvannealing kinetics and crater has been investigated in interstitial-free high strength steel(IFHSS) containing Si and Mn. When the Si/Mn ratio was below 0.75, IF-HSS exhibited a good wettability leading to a good galvannealed coating quality after annealing at $800^{\circ}C$ for 40s in $15%H_2-N_2$ mixed gas with dew point $-60^{\circ}C$. In contrast, the wettability and galvannealed coating quality were deteriorated in the Si/ Mn ratio above 0.75. It is shown that they have relevance to oxides forms by selective oxidation on the steel surface. The oxide particles dispersed on the steel surface with a surface coverage of below 40% resulted in good wettability and galvannealed coating quality. The oxide particle is mainly consisted of $Mn_2SiO_4$ with low contact angle in molten zinc. On the other hand, the continuous oxide layer on the steel surface, such as network- and film-type,caused to poor wettability and galvannealed coating quality. The coverage of oxide layer was above 80%, and its chemical species was $SiO_2$ with high contact angle in molten zinc. Consequently, the Si/Mn alloy ratio played an importance role in galvannealed coating quality of IF-HSS.

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei;Zheng, Dewen;Xian, Yuxi;Hu, Xianhai;Zhang, Qian;Wang, Shanyu;Li, Mingjun;Cheng, Congliang;Liu, Jin;Wang, Ping
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.325-330
    • /
    • 2021
  • Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Improvement of Particleboard Manufacturing Process and its Properties Using Powdered Tannin Adhesives (분말상 탄닌수지를 이용한 파티클보드 제조기술 및 물성개선)

  • Kang, Seog Goo;Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • This study was carried out to improve the properties of powdered tannin adhesive(PT) by adding liquid tannin resin(LT) to PT in the manufacture of particleboard. Mixing the LT to PT from 50% to 100% by weight did not show any difference in particleboard properties, but the higher the powdered tannin resin ratio, the lower the properties of the board. The proper ratio of PT to LT was 30:70 for the improvement of PT-particleboard, unless LT lower than 70%. Internal bonding strength was in proportional to the amount of LT. Mixing amino adhesives and PT did not show any improvements in mechanical and physical properties of the board but they only acted as scavenger for the free formaldehyde.Manufacturing particle board with the adhesive of 30:70 (PT:LT) and by using double blender resulted in high-performance products of E0 level of formaldehyde emission with high water resistance (U type; below 12%, M type; below 25%), as well as saving chip drying energy.