• 제목/요약/키워드: Particle-based flow simulation

검색결과 135건 처리시간 0.031초

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian;Qu, Wenhai;Xiong, Jinbiao
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3625-3634
    • /
    • 2021
  • The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.

Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.45-53
    • /
    • 2010
  • This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

마산만에서 입자수치실험에 의한 해파리 분포연구 (A Study of Distribution of Jellyfish by Particle Numerical Experiment in Masan Bay)

  • 최민호;유태관;김동선
    • 해양환경안전학회지
    • /
    • 제22권4호
    • /
    • pp.335-343
    • /
    • 2016
  • 마산만에서 수치모델을 이용하여 해파리의 시 공간적 분포를 파악하였다. 먼저 3차원 해수유동모델(POM)을 이용하여 조석, 바람, 수온 염분의 효과를 고려한 잔차류를 계산하였다. 마산만의 마산항, 중공업단지, 가포신항에서 발생한 해파리의 거동을 파악하기 위하여 잔차류에 의한 입자추적자 모델을 이용하였다. 해파리의 분포는 마창대교 북쪽해역에서 최대인 2,533 개체수가 나타났다. 이와 같은 현상은 잔차류의 다방향으로 혼재하는 흐름과 지형적인 영향으로 판단된다. 해파리의 이동에 영향을 미치는 잔차류가 우세한 해역에서 외력조건에 따른 해파리의 집적도를 알아보기 위해서 조석잔차류, 취송류, 밀도류의 유형별 수치실험을 하였다. 특히 마산만의 마창대교와 마산만 입구인 모도해역에서는 취송류(바람에 의한 효과)가 해파리의 집적에 탁월한 것을 확인하였다.

전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가 (Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics)

  • 김성훈;유제선;박희경
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code

  • Xia, Zhi G.;Chen, Shao J.;Liu, Xing Z.;Sun, Run
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2020
  • Natural rock mass contains defects of different shapes, usually filled with inclusions such as clay or gravel. The presence of inclusions affects the failure characteristics and mechanical properties of rock mass. In this study, the strength and failure characteristics of rock with inclusions were studied using the particle flow code under uniaxial compression. The results show that the presence of inclusions not only improves the mechanical properties of rock with defects but also increases the bearing capacity of rock. Circular inclusion has the most obvious effect on improving model strength. The inclusions affect the stress distribution, development of initial crack, change in crack propagation characteristics, and failure mode of rock. In defect models, concentration area of the maximum tensile stress is generated at the top and bottom of defect, and the maximum compressive stress is distributed on the left and right sides of defect. In filled models, the tensile stress and compressive stress are uniformly distributed. Failing mode of defect models is mainly tensile failure, while that of filled models is mainly shear failure.

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화 (CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석 (Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill)

  • 오양가;보르 암갈란;바춘흘루 이치커;이재현;최희규
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.456-466
    • /
    • 2017
  • 이 연구는 교반볼밀을 이용한 금속기반 복합재 제조공정에 있어서 분쇄매체의 차이에 의한 입자형상의 변화를 관찰하고, 볼 거동의 DEM시뮬레이션을 행하였다. 교반볼밀에서 볼 거동의 3차원 시뮬레이션을 통해 분쇄메커니즘을 규명하기 위하여 분쇄매체의 힘, 운동에너지, 매체 운동속도 등을 계산하였다. 또한 복합재 제조를 위한 실험조건을 이전의 다른 볼밀에서에 같이 교반볼밀 회전속도를 변화시켰고, 볼 재질, 운동속도, 마찰계수 등도 동일한 조건으로 변화시키면서 투입되는 에너지의 변화량도 계산하였다. 교반볼밀의 회전속도가 증가함에 따라, 분쇄매체와 매체, 매체와 벽면, 그리고 매체와 교반기 사이의 충격에너지가 증가하는 것을 정량적으로 계산 할 수 있었다. 또한 같은 실험 조건에서 입자형상 변화를 명확하게 분석 할 수 있었으며, 볼 거동이 입자형상 변화에 매우 큰 영향을 미치는 것을 알 수 있었다.