• Title/Summary/Keyword: Particle-Particle Interactions

Search Result 197, Processing Time 0.029 seconds

Numerical Simulation of Erosion Rate on Pipe Elbow Using Coupled Behavior of Fluid and Particle (유체-입자 연성 운동에 의한 굽힘형 배관의 침식률 수치해석)

  • Jang, Ho-Sang;Lee, Hawon;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The erosion of solid particles in a pipe elbow was numerically investigated. A numerical procedure to estimate the sand erosion rate, as well as the particle motion, in the pipe elbow flow was introduced. This procedure was performed based on the combined empirical erosion model and computational fluid dynamics (CFD) analysis to consider the interaction between the particle motion and the eroded surface. The underlying turbulent flow on an Eulerian frame is described by the Reynolds averaged Navier-Stokes (RANS) equations with a $k-{\epsilon}$ turbulent model. The one-way coupled Eulerian-Lagrangian motion of the air flow and sand particles is employed to simulate the particle trajectories and particle-wall interactions on the pipe surfaces. The predicted CFD erosion magnitudes are compared with experimental data from pipe elbows. The erosion rate results do not reveal a good accordance between the simulation and experimental results. It seems that the CFD shows a slightly over-predicted erosion ratio.

Effects of Operating Conditions of an Air-Classifier Mill on the Particle Size of Fine Powder (공기분급식 미분쇄기의 운전조건이 미세분말의 크기에 미치는 영향)

  • Shin, Eung-Soo;Kim, Kee-Sung;Kim, Young-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.426-433
    • /
    • 2016
  • This paper investigates the effects of operating conditions of an air classifier mill (ACM) on the particle sizes of PVC and rice hull. Based on the Box-Behnken matrix, the pulverization experiments were performed considering three operating factors: the air flow rate, the classifier speed and the mill speed. The response surface methodology was applied to identify the effects of the operating factors on the particle size. Results show that the particle sizes are governed by the linear variations of the operating factors. As less air is supplied and the mill rotates more slowly, the powder of both PVC and rice hull becomes finer. Furthermore, the classifier speed has a significant effect on the PVC powder but almost no effect on the rice hull powder. Thus, it is found that strong interactions exist between the material characteristics of a particle and the operating conditions of the ACM.

Low Voltage and Rapid Response Time Electrophoretic Display

  • Lee, Y.E.;Cho, Y.T.;Choi, Y.G.;Park, S.C.;Lee, M.H.;Park, Y.M.;Kim, D.Y.;Kim, C.H.;An, C.H.;Kim, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.360-363
    • /
    • 2009
  • In this paper, we describe new approach of ink particle fabrication method for electrophoretic display(EPD) with low voltage and rapid response time. Nano-size ink particles which fabricated using non-aqueous base modified emulsion process and micron-scale particles by non-solvent particle fabrication process are discussed. Finally, specially designed particles and panel structure fabricated considering the interactions between particle/particle, particle/media or particle/electrode dramatically reduce the driving voltages to ${\pm}$ 10V and improve the response time of less than 100msec and white reflectance of 58% for EPD using dielectric fluid as a medium. In case of EPD adapting micron-sized electrophoretic particles and a medium of air, the saturation voltage could be reduced to ${\pm}$ 40V and having white reflectance of 45% without scarification of electrophoretic mobility of the particles.

  • PDF

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

Effective viscosity of bidisperse suspensions

  • Koo Sangkyun;Song Kwang Ho
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • We determine the effective viscosity of suspensions with bidisperse particle size distribution by modifying an effective-medium theory that was proposed by Acrivos and Chang (1987) for monodisperse suspensions. The modified theory uses a simple model that captures some important effects of multi-particle hydrodynamic interactions. The modifications are described in detail in the present study. Estimations of effective viscosity by the modified theory are compared with the results of prior work for monodisperse and bidisperse suspensions. It is shown that the estimations agree very well with experimental or other calculated results up to approximately 0.45 of normalized particle volume fraction which is the ratio of volume faction to the maximum volume fraction of particles for bidisperse suspensions.

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

Energetic Electron and Proton Interactions with Pc5 Ultra Low Frequency (ULF) Waves during the Great Geomagnetic Storm of 15-16 July 2000

  • Lee, Eunah;Mann, Ian R.;Ozeke, Louis G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.

Direct-current Dielectrophoretic Motions of a Single Particle due to Interactions with a Nearby Nonconducting Wall (비전도성 벽과의 상호작용에 따른 단일 입자의 직류 유전영동 운동)

  • Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.425-433
    • /
    • 2015
  • In this paper, we have numerically investigated two-dimensional dielectrophoretic (DEP) motions of a single particle suspended freely in a viscous fluid, interacting with a nearby nonconducting planar wall, under an externally applied uniform direct-current electric field. Particularly, we solve the Maxwell equation with a large sharp jump in the electric conductivity at the particle-fluid interface and then integrate the Maxwell stress tensor to compute the DEP force on the particle. Results show that, under an electric field parallel to the wall, one particle is always repelled to move far away from the wall and the motion depends strongly on the particle-wall spacing and the particle conductivity. The motion strength vanishes when the particle is as conductive as the fluid and increases as the conductivity deviates further from that of the fluid.

PARTICLE ACCELERATION IN SUPERNOVA REMNANTS

  • KANG, HYESUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.545-548
    • /
    • 2015
  • Most high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) in supernova remnants (SNRs) within the Galaxy. Plasma and MHD simulations have shown that the self-excitation of MHD waves and amplification of magnetic fields via plasma instabilities are an integral part of DSA for strong collisionless shocks. In this study we explore how plasma processes such as plasma instabilities and wave-particle interactions can affect the energy spectra of CR protons and electrons, using time-dependent DSA simulations of SNR shocks. We demonstrate that the time-dependent evolution of the shock dynamics, the self-amplified magnetic fields and $Alfv{\acute{e}nic$ drift govern the highest energy end of the CR energy spectra. As a result, the spectral cutoffs in nonthermal X-ray and ${\gamma}$-ray radiation spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. We also find that the maximum energy of CR protons can be boosted significantly only if the scale height of the magnetic field precursor is long enough to contain the diffusion lengths of the particles of interests. Thus, detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations are crucial for understanding the nonthermal radiation from CR acceleration sources.

Rheology of flocculated kaolinite dispersions

  • McFarlane A.J.;Addai-Mensah J.;Bremmell K.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • Rheological characterisation of flocculated kaolinite pulps has been undertaken to elucidate particle interactions underpinning the dewatering behaviour induced by flocculation with polyethylene oxide (PEO), anionic polyacrylamide (PAM A) and their blends. Shear yield stress $(\tau_y)$ analysis indicated that polymer mediated particle interactions were markedly amplified upon shear of PEG based pulps. In contrast, PAM A based pulps showed a significant decrease in yield values upon shear. Steady stress measurements analysed using a modified Ellis model indicated subtle differences between the respective linear viscoelastic plateaus of the pulps. Furthermore, modified shear thinning behaviour was evident in PEG based pulps. Estimation of elastic and viscous moduli (G', G') was made using dynamic stress analysis for comparison with values determined from vane measurements. Despite a noticeable difference in the magnitude of G' between the two methods, similar trends indicating sheared PEG-based pulps to be more elastic than PAM based pulps, were observed. Floc microstructural observations obtained in support of rheological properties indicate that PEG flocculant induces significantly more compact particle aggregation within the clay pulps under shear consistent with the yield stress data, in contrast to PAM A, or indeed unsheared PEG based pulps. Consequentially, sheared PEG based pulps show significantly improved dewatering behaviour. The implications of the results, potential benefits and drawbacks of flocculation with PEG and PAM A are discussed with respect to improvements in current dewatering processes used in the minerals industry.