• Title/Summary/Keyword: Particle volume fraction

Search Result 222, Processing Time 0.028 seconds

The Effect of SiCp Size on the Mechanical Preperties of ($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 Hybrid Mg Composites (($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 하이브리드 Mg 복합재료의 기계적 특성에 미치는 SiCp크기의 영향)

  • 하창식;김봉룡;조경목;박익민;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.29-33
    • /
    • 2001
  • In the present study, AZ91Mg/$\textrm{Al}_2\textrm{O}_3$ short fiber+SiC particulates hybrid metal matrix composites(MMCs) were fabricated by squeeze casting method. Different particulate sizes of 45, 29 and $9\mu\textrm{m}$ were hybridized with 5% volume fraction to investigate the effect of SiC particulates size on microstructure, mechanical and thermal properties such as hardness, flexural strength, wear resistance and thermal expansion. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements. Some aggregation of SiC particulates caused by particle pushing was observed especially in the hybrid composites containing in fine particulates($9\mu\textrm{m}$). The hardness and flexural strength were improved by decreasing particulates size, whereas wear resistance improved by increasing particulates size because of large particulates restricting matrix wear from contacted stress. Regardless of particulates size, thermal expansion of composites was the same. This may be because the content of particulates was in all cases 5 volume fraction.1

  • PDF

Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites (카본블랙 충진 Polyethylene Matrix Composites의 유전 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.196-201
    • /
    • 2011
  • It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.

A Study on the Development of Emulsified Fuel Supplier and Spray Characteristics of Domestic Petroleum Boiler (가정용 보일러의 유화연료 공급장치 개발 및 분무 특성에 관한 연구)

  • Yoon, M.K.;Kim, Y.K.;Ryu, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 1998
  • The spray characteristics of emulsified fuel of W/O type has been experimentally investigated. The mixture of light oil and water by using ultrasonic energy adding system is used as the emulsified fuel. The SMD of sprayed droplet of emulsified fuel is measured by using the particle size analyzer. Major parameters of the present experimental study are the volume fraction of water in emulsified fuel, $0\sim30%$ by 5%, injection pressure, $10kg_f/cm^2\sim18kg_f/cm^2$ by $2kg_f/cm^2$, and the measurement distance, $10\sim100mm$, between injection nozzle tip and analyzer beam. Compared with light oil, the SMD of emulsified fuel is larger gradually by increasing the volume fraction of water in emulsified fuel, heightening injection pressure and increasing the spray distance. Also, In considering the fact that the pattern of drop size distribution of emulsified fuel is alike that of light oil, the real time spray in coincidence with making emulsified fuel by adding ultrasonic energy can stabilize spray pattern without modificating the injection system used by now.

  • PDF

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

A study on the Mechanical Properties of $Al_2O_{3(p)}$/LXA Composites by Melt-stirring Method (용탕교반법에 의한 $Al_2O_{3(p)}$/LXA복합재료의 기계적 성질에 관한 연구)

  • 이현규;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • Casting of metal matrix composites is an attractive process since it offers a wide selection of materials and processing conditions. Among the casting methods, melt-stirring technology is much attractive route in industrial application because it is more simple and inexpensive compared to squeeze casting or powder metallurgy. In the present work, effects of particle size, volume fraction of particles and mg addition on mechanical properties and thermal expansion coefficients of $\alpha$ -$Al_2O_{3(p)}$/LXA composites were studied. It is shown that $\alpha$ -$Al_2O_3$ particles formed at the interface of $\alpha$ -$Al_2O_3$ particles and matrix made an important role on mechanical properties. Ultimate tensile strength of most composite materials was not increased. But in the case of 5vol% addition of 16$\mu\textrm{m}$ $\alpha$ -$Al_2O_3$ Particle, Ultimate tensile strength of composite materials with 3wt.% Mg was increased. Volume fraction of reinforcements and mg content were thermal expansion coefficients of composite materials were decreased.

  • PDF

A Study on the Air Pollution Component in Hwasoon Nulitjae Tunnel (화순너릿재 터널내의 대기오염성분에 관한 조사연구)

  • 신대윤;송금섭;김정규;송연호;임만택
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.52-57
    • /
    • 1993
  • This study was carried out to investigate the air pollution in Hwasoon Nulitjae tunnel for two months, from August 1992 to September 1992. The total suspended particles were collected by high volume air sampler at inside and outside of Hwasoon Nulitjae tunnel, of which major water soluble component and heavy metalic element were analyzed. Size distribution and respirable mass fraction of aerosol at inside were measured by filters on nine stages Andersen air sampler. The average concentration of TSP at inside was 657.57 $\mu$g/m$^3$, which appeared about 9.2 times as high as that of 71.47 $\mu$g/m$^3$ at outside. The decrease effect caused by using new tunnel was 31.2%. As a result of correlation analysis between concentration of TSP at inside of Hwasoon Nulitjae tunnel and that at outside, correlation coefficient was 0.713. The average concentrations of SO$_4^{2-}$ , NO$_3^-$, CI$^-$ were 43.02 $\mu$g/m$^3$, 19.86 $\mu$g/m$^3$, 4.96 $\mu$g/m$^3$, those of NH$_4^+$, Na$^+$, K$^+$ 1.42 $\mu$g/m$^3$, 4.45 $\mu$g/m$^3$, 2.89 $\mu$g/m$^3$ and those of Ca$^{2+}$, Mg$^{2+}$, Pb$^{2+}$ 3.92 $\mu$g/m$^3$, 2.27 $\mu$g/m$^3$. 1.52 $\mu$g/m$^3$, respectively. It was estimated that mass fraction rate of respirable particle at inside was about 84.54% of aerosol. The average concentration of suspended particle to be collected by Andersen sampler was 478.90 $\mu$g/m$^3$, this was about 72.8% of that by high volume air sampler.

  • PDF

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

Characteristics of Aerosol Size Distribution from OPC Measurement in Seoul, 2001 (OPC(광학적 입자 계수기)로 측정한 2001년 서울지역 에어로졸의 입경 분포)

  • 정창훈;전영신;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.515-528
    • /
    • 2003
  • The characteristics of one year observation aerosol data in Seoul, 200 I was studied using an OPC (Optical Particle Counter). The size resolved aerosol number concentrations of 0.3 ∼ 25 11m were measured. The results were compared with PM$_{10}$ mass concentration data under various meteorological conditions including dust and precipitation events. For fine particles whose diameter is less than 2.23 ${\mu}{\textrm}{m}$, the number concentration increases in the early morning which is considered due to transportation. while the coarse mode particles increase during daytime. This increase can be explained as local sources and human activities near sampling site. Hourly averaged data show that there exists diurnal variation. Generally, PM$_{10}$ data showed a similar tendency with OPC data. The size resolved OPC data showed that the particles of 0.5 ∼ 3.67 ${\mu}{\textrm}{m}$ are positively correlated with PM$_{10}$ data. The accumulated volume fraction of size resolved aerosol concentration in 0.5 ∼ 10 ${\mu}{\textrm}{m}$ showed that 0.5 ∼ 2.23 ${\mu}{\textrm}{m}$ particles occupied 59.2% of total aerosol volume of 0.5 ∼ 10 ${\mu}{\textrm}{m}$./TEX>.

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF