• Title/Summary/Keyword: Particle velocity

Search Result 1,620, Processing Time 0.036 seconds

An Electrical Particle Velocity Profiler Using Particle Transit Time Across Uneven Inter-Gap Electrodes (비등간격 전극열에서의 입자 통과시간을 이용한 전기적 입자속도분포 검출기)

  • Kim, Tae-Yoon;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.297-302
    • /
    • 2008
  • We present an electrical particle velocity profiler using particle transit time across uneven inter-gap electrodes. We measure both the particle position and velocity from the voltage signals generated by the particles passing across sensing electrodes, thus obtaining the velocity profile of the particles in a microfluidic channel. In the experimental study, we use polystyrene microparticles to characterize the performance of the electrical particle velocity profiler. The particle velocity profile is measured with the uncertainty of 5.44%, which is equivalent to the uncertainty of 5% in the previous optical method. We also experimentally demonstrate the capability of the present method for in-channel clogging detection. Compared to the previous optical methods, the present electrical particle velocity profiler offers the simpler structure, the cheaper cost, and the higher integrability to micro-biofluidic systems.

Analysis of Particle Motion Impinging on a Flat Plate (평판에 충돌하는 미립자의 유동분석)

  • Kim, Jin;Kim, Byung-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

Experimental Observation of the Settling Velocity of Coarse Particles and Comparative Analysis (조립입자 침강속도에 대한 실험적 관찰 및 비교분석)

  • Son, Moorak;Jang, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.33-38
    • /
    • 2015
  • This study conducted experimental observations of the settling velocity of a coarse particle in water varying material type and particle size and compared the results with preexisting empirical equations. Three types of materials, which are polyacetal, glass and steel, were used in this study and the diameter of particle ranged from 1 mm to 20 mm. Experiment results showed that the settling velocity of coarse particle had a significant difference from Stokes equation which is known applicable for a fine particle smaller than $50{\mu}m$. In addition, the observed particle velocity showed a significant difference when compared with other empirical equations, which was proposed for estimating the settling velocity of a particle regardless of particle size, depending on the material type and particle size. The results from experimental observations indicated that the settling velocity of a coarse particle was relatively in smaller difference to other empirical equations for the particle size smaller than 3 mm, but as the size increased the difference in the settling velocity also increased. This study clearly showed that the settling velocity of a coarse particle velocity can be significantly different depending on particle size and density and the empirical equations may not reliably estimate the settling velocity of a coarse particle so that they should not be used as it is and a verification of them is necessarily before any use. The study results would provide a useful information for a better understanding of settling velocity of a particle in water.

Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity (입자충격속도에 따른 세라믹재료의 콘크랙 형상 변화)

  • O, Sang-Yeop;Sin, Hyeong-Seop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.380-386
    • /
    • 2002
  • Damage behaviors induced in silicon carbide by an impact of particle having different material and size were investigated. Especially, the influence of the impact velocity of particle on the cone crack shape developed was mainly discussed. The damage induced by spherical impact was different depending on the material and size of particles. Ring cracks on the surface of specimen were multiplied by increasing the impact velocity of particle. The steel particle impact produced larger ring cracks than that of SiC particle. In the case of high velocity impact of SiC particle, radial cracks were produced due to the inelastic deformation at the impact site. In the case of the larger particle impact, the damage morphology developed was similar to the case of smaller particle one, but a percussion cone was farmed from the back surface of specimen when the impact velocity exceeded a critical value. The zenithal angle of cone cracks developed into SiC material decreased monotonically with increasing of the particle impact velocity. The size and material of particle influenced more or less on the extent of cone crack shape. An empirical equation, $\theta$= $\theta$$\sub$st/, v$\sub$p/(90-$\theta$$\sub$st/)/500 R$\^$0.3/($\rho$$_1$/$\rho$$_2$)$\^$$\frac{1}{2}$/, was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of cone crack. It is expected that the empirical equation will be helpful to the computational simulation of residual strength in ceramic components damaged by the particle impact.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

A Study of Gas Dynamics of the High-Velocity Oxy-Fuel Thermal Spray Gun (HVOF 용사총의 기체역학에 관한 연구)

  • Cho, Pil-Jae;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.574-579
    • /
    • 2003
  • The present study addresses an analytical investigation to understand the characteristics of gas flow in the High-Velocity Oxy-Fuel(HVOF) thermal spray gun. One-dimensional analysis is extended to involve the effects of the wall friction and powder particle diameter. From the present analysis it is well known that the flow characteristics inside and outside the thermal spray gun is varied depending on the combustion chamber pressure. The thermal spray gun flow is characterized by six different patterns. The powder particle size and wall friction significantly influence the powder particle velocity. The particle velocity decreases with an increase in the powder particle size. This implies that the combustion chamber pressure should be increased to achieve a higher velocity of the powder particle.

  • PDF

Simultaneous Measurement of Fluid Velocity and Particle Velocity in a Particle-Containing Fluid Flow (입자가 포함된 유동장에서 유체속도와 입자속도의 동시 측정기법)

  • Jin Dong-Xu;Lee Dae-Young;Lee Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.355-363
    • /
    • 2005
  • A novel method for simultaneously measuring the fluid velocity and the large particle velocity in a particle-containing fluid flow is developed in this study. In this method, the fluid velocity and the large particle velocity are measured by PIV and PTV, respectively. The PIV and PTV images are obtained from the same flow images. Since a PIV result represents the average displacement of all particles in an interrogation area, it will include an error caused by the relative displacement between the large particles and the fluid. In order to reduce the false influence of large particles on the PIV calculation, the mean brightness of small PIV particle images is substituted to the locations of large particles in the PIV images. The simulation results showed that the new method significantly reduces the PIV error caused by the large particles even at the case where the large particles occupy area fraction as large as $20\%$ of the full image.

Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-Solid Circulating Fluidized Bed

  • Lim, Dae Ho;Lim, Ho;Jin, Hae Ryong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.371-377
    • /
    • 2014
  • Characteristics of holdup and flow behavior of fluidized solid particles were investigated in a liquid-solid circulating fluidized bed ($0.102m{\times}3.5m$). Effects of liquid velocity ($U_L$), particle size ($d_P$) and solid circulation rate ($G_S$) on the solid holdup, overall particle rising velocity, slip velocity between liquid and particles and hydrodynamic energy dissipation rate in the riser were examined. The particle holdup increased with increasing $d_P$ or $G_S$ but decreased with increasing $U_L$. The overall particle rising velocity increased with increasing $U_L$ or $G_S$ but decreased with increasing $d_P$. The slip velocity increased with increasing $U_L$ or $d_P$ but did not change considerably with $G_S$. The energy dissipation rate, which was found to be closely related to the contacting frequency of micro eddies, increased with increasing $d_P$, $G_S$ or $U_L$. The solid particle holdup was well correlated with operating variables such as $U_L$, $d_P$ and $G_S$.