• Title/Summary/Keyword: Particle separation

Search Result 480, Processing Time 2.465 seconds

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: I. Coating Characteristics of Nanoparticulate SiO2 Sols (기체분리용 세라믹 복합분리막의 개발: I. 극미세 입자 실리카 졸의 코팅 특성)

  • ;Marc A. Anderson
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.496-504
    • /
    • 1992
  • Alumina tubes suitable for the support of gas separation membranes have been prepared by the slipcasting technique. These supports have the average pore size of 0.1 ${\mu}{\textrm}{m}$ within the narrow distribution. The sol-gel dipcoating process of nanoparticulate sols is very sensitive to microstructure of the support, and the coating on the inside surface of the tube is found to be more successful than on the outside surface. Nanoparticulate silica sols (0.82 mol/ι) have been synthesized by an interfacial hydrolysis reaction between TEOS and high alkaline water. When coating an alumina tube with these sols, the minimum limits of the particle size and the aging time required for forming the coated gel layer at the given pH are provided. It is optimum to coat the support with less concentrated sols stabilized through aging for the appropriate time (more than 22 days) at the lower pH (pH 2.0) for producing a reproducible crack free thin film coating in composite membranes.

  • PDF

Measurement of Sizes and Velocities of Spray Droplets by Image Processing Method (영상 처리에 의한 분무 액적의 크기 및 속도 추출)

  • Choo, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • In this study, the sizes and velocities of droplets in sprays were measured by image processing method from digital images of local region of sprays. The morphological method based on the Euclidean distance transform, Watershed separation, and perimeter image was adopted for the recognition and separation of overlapped particles. The match probability method was used for the particle tracking and pairing. The measurement results show that the present method may be reliable for the analysis of the motion and distribution of droplets produced by spray and atomization devices.

  • PDF

Development of Separation Algorithm of Overlapped Particles in Spay Flow (분무 유동에서 중첩 인자 분리 알고리즘의 개발)

  • Yang, C.J.;Kim, J.H.;Cho, D.H.;Oh, J.H.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.118-119
    • /
    • 2005
  • Recently, fire extinguishing systems based on water mists have been attracting public attentions in marine engineering. Performance of the fire extinguishing systems is influenced by the size and distribution of spayed water mists. Droplet analyzing method based on image processing technique for measuring droplet size and distribution has been developed. The morphological method based on partial curvature information of pre-processed images was adopted for recognition and separation of overlapped particles. Tested results show that the present method may be reliable for the analysis of the size and distribution of droplets produced by water mist spay flow.

  • PDF

Slaking and Particle-Separation Characteristics of the Organic Fine Soil in Paddy Fields (전답용 유기질 세립토의 슬레이킹 내구성 및 분쇄 특성)

  • Cho, Sung-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Clayey paddy soils should be mixed with other good coarse soils to be used as a material for the lining, or, embankment. However, it has been difficult to separate soil particles from each other because of the internal cohesion in the soil gradation(separation) characteristics of the fine soil were investigated by various laboratory tests including the slaking durability test. Degradation rate of the soil were dependent upon the clay content and the initial water content before the submergence. The amount of degradations decreased as initial water content increased with exponential functions. The dried specimens separated into the particles after 24 hours of the submergence and specimens which water contents were less than 10% also separated into the particles after 2, or 3 days of the submergence. Compaction curves and the unconfined strength were not varied before and after the submergence. However, unconfined strength decreased as water content increased.

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis (단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향)

  • Hong Seung-hyun;Jung Se-hun;Kim Young-jin;Choi Jae-bong;Baik Seunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

Design and Applications of Molecularly Imprinted Polymers for Selective Separations (선택적 분리를 위한 분자 각인 고분자의 설계 및 응용)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF

Biopharmaceutical Studies on Zipeprol Dihydrochloride Microcapsules (염산지페프를 마이크로캅셀에 관한 생물약제학적 연구)

  • Yong, Jae-Ick;Kim, Ock-Nam
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.187-195
    • /
    • 1988
  • Poorly permeable $Eudragit^{\circledR}$ RS 100 polymer was used as a wall material for the microencapsulation of zipeprol dihydrochloride by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene in cyclohexane, and microcapsules obtained were evaluated in vitro by particle size analysis, scanning electron microscopy, drug release test and in vivo bioavailability test in rats. The mechanism of drug release from microcapsules appeared to fit Higuchi matrix model kinetics. The area under the first moment of plasma concentration-time curve of the microcapsules obtained was considerably increased (p<0.05) as compared with that from zipeprol dihydrochloride oral solution. Therefore, it may be suggested that $Eudragit^{\cirledR}$ RS 100 coated zipeprol dihydrochloride microcapsules can be used as a sustained release medication.

  • PDF

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Han, Shuai-shuai;Li, Su-qin;Yang, Rui-ming;Yang, Chang-qiao;Xing, Yi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 2019
  • Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.

Study of micro-plastics separation from sea water with electro-magnetic force

  • Nomura, Naoki;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.10-13
    • /
    • 2021
  • The method of removing micro-plastics from sea water has been developed using electro-magnetic force. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. The Lorentz force was generated in simulated sea water and its reaction force was applied to the micro-plastic to control their motion. Lorentz force was generated downward and the reaction force to the plastics was upward. The plastic used in the experiment was polystyrene with a diameter of 6 mm, and the density was 1.07 g/cm3. The polystyrene sphere levitated at the current density of 0.83 A/cm2 and the external field of 0.87T. The particle trajectory calculation was also made to design separation system using superconducting magnet.