• Title/Summary/Keyword: Particle polarization

Search Result 101, Processing Time 0.022 seconds

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

Bragg Gratings Generated by Coupling of Surface Plasmons Induced on Metal N anoparticles

  • Song, Seok-Ho;Won, Hyong-Sik;Choi, Ki-Young;Oh, Cha-Hwan;Kim, Pill-Soo;Shin, Dong-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 2004
  • Diffraction Bragg gratings consisting of metal (silver) nanoparticles are generated inside a soda-lime glass substrate. After ion-exchanging and annealing processes in the glass, the silver nanoparticles are first formed with the particle diameters of 10 nm ∼ 30 nm. By interfering two CW laser beams at ∼ 60 ${\mu}{\textrm}{m}$ deep under the surface of the nanoparticles-dispersed glass, Bragg gratings with thickness of 15 ${\mu}{\textrm}{m}$ and period of 3.5 ${\mu}{\textrm}{m}$ are generated. Diffraction efficiency of the gratings formed by two TE-polarized beams is three times higher than that by two TM-polarized beams. From this polarization dependence, we have found that strong coupling of the surface plasmons induced on the metal particles may contribute dominantly to generate the diffraction grating.

Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers (난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구)

  • Kwon, Seong-Hun;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

Electrochemical Characteristics of HA Film on the Ti Alloy Using Pulsed Laser Deposition

  • Jeong, Yong-Hoon;Shin, Seung-Pyo;Chung, Chae-Heon;Kim, Sang-Sub;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • In this study, we have investigated the surface morphology of hydroxyapatite (HA) coated Ti alloy surface using pulsed laser plating. The HA (tooth ash) films were grown by pulsed KrF excimer laser, film surfaces were analyzed for topology, chemical composition, crystal structure and electrochemical behavior. The Ti-6Al-4V alloy showed ${\alpha}$ and ${\beta}$ phase, Cp-Ti showed ${\alpha}$ phase and the HA coated surface showed HA and Ti alloy peaks. The HA coating layer was formed with $1-2{\mu}m$ droplets and grain-like particles, particles which were smaller than the HA target particle, and the composition of the HA coatings were composed of Ca and P. From the electrochemical test, the pitting potential (1580 mV) of HA coated Ti-6Al-4V alloy was higher than those of Cp-Ti (1060 mV) and HA coated Cp-Ti (1350 mV). The HA coated samples showed a lower current density than non-HA coated samples, whereas, the polarization resistance of HA coated samples showed a high value compared to non-HA coated samples.

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

Microwave Absorbing Properties of Iron Particles-Rubber Composites in Mobile Telecommunication Frequency Band (이동통신주파수 대역에서 순철 분말-고무 복합체 Sheet의 전파흡수특성)

  • Kim, Sun-Tae;Kim, Sant-Keun;Kim, Sung-Soo;Yoon, Yeo-Choon;Lee, Kyung-Sub;Choi, Kwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.131-137
    • /
    • 2004
  • For the aim of thin electromagnetic wave absorbers used in mobile telecommunication frequency band (0.8-2.0㎓), we investigate high-frequency magnetic, dielectric and microwave absorbing properties of iron particles dispersed in rubber matrix in this study. The major experimental variables are particle shape (sphere and flake) and initial particle size (in the range 5-70 $\mu\textrm{m}$) of iron powders. High value of magnetic permeability and dielectric permittivity can be obtained in the composites containing thin plate-shape (flake) iron particles (of which thickness is less than skin depth in ㎓frequency), which can be produced by mechanical forging of spherical iron powders using an attrition mill. This result is attributed to the reduction of eddy current loss (increase of permeability) and the increase of space charge polarization (increase of permeability). The optimum initial particle size is found to be about 10 $\mu\textrm{m}$ for the attainment of the material parameters (particularly, real part of complex permeability) satisfying the wave impedance matching. With the iron powders controlled in size and shape as absorbent fillers in rubber matrix, the thickness can be reduced to about 0.7mm with respect to -5㏈ reflection loss (70% power absorption) in mobile telecommunication frequency band.

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell (알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석)

  • Yuk, Eunsung;Lee, Hyejin;Jung, Namgee;Shin, Dongwon;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.