• Title/Summary/Keyword: Particle matter

Search Result 521, Processing Time 0.029 seconds

Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter (Learning Progression을 적용한 중·고등학생의 '물질의 입자성'에 관한 지식과 미시적 표상에 대한 특성 분석)

  • Shin, Namsoo;Koh, Eun Jung;Choi, Chui Im;Jeong, Dae Hong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.437-447
    • /
    • 2014
  • Learning progressions (LP), which describe how students may develop more sophisticated understanding over a defined period of time, can inform the design of instructional materials and assessment by providing a coherent, systematic measure of what can be regarded as "level appropriate." We developed LPs for the nature of matter for grades K-16. In order to empirically test Korean students, we revised one of the constructs and associated assessment items based on Korean National Science Standards. The assessment was administered to 124 Korean secondary students to measure their knowledge and submicroscopic representations, and to assign them to a level of learning progression for the particle nature of matter. We characterized the level of students' understanding and models of the particle nature of matter, and described how students interpret various representations of atoms and molecules to explain scientific phenomena. The results revealed that students have difficulties in understanding the relationship between the macroscopic and molecular levels of phenomena, even in high school science. Their difficulties may be attributed to a limited understanding of scientific modeling, a lack of understanding of the models used to represent the particle nature of matter, or limited understanding of the structure of matter. This work will inform assessment and curriculum materials development related to the fundamental relationship between macroscopic, observed phenomena and the behavior of atoms and molecules, and can be used to create individualized learning environments. In addition, the results contribute to scientific research literature on learning progressions on the nature of matter.

Removal Characteristics of Organic Contaminants by Ultrasonic Soil Washing (토양 세척 시 초음파 적용에 따른 유기 오염물 제거 특성 평가)

  • Lim, Chan-Soo;Kim, Seog-Ku;Kim, Weon-Jae;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2014
  • Cavitation generated by ultrasonic irradiation can enhance the diffusional transport of organic contaminants from soil surfaces or pores. Therefore, ultrasound soil washing can be an alternative of traditional soil washing process. In this study, soil was artificially contaminated with n-tetradecane, n-hexadecane and phenanthrene. A plate type ultrasonic reactor at 25 kHz frequency and 1000W power was used for laboratory soil washing experiments. Ultrasonic soil washing efficiency was compared with those of traditional soil washing using mechanical mixing. Various operational parameter such as soil/liquid ratio, irradiation time, particle size, and soil organic matter content was tested to find out the optimum condition. It was found that ultrasonic soil washing demonstrates better performance than mechanical soil washing. Optimum soil:liquid ratio for ultrasonic soil washing was 1 : 5. Desorption of organic contaminants from soils by ultrasonic irradiation was relatively fast and reached equilibrium within 10 minute. However, decrease in the soil particle sizes by ultrasonic irradiation results in re-adsorption of contaminants to soil phase. It was also observed that soil particle size distribution and soil organic matter content have significant effects on the efficiency of ultrasonic soil washing.

An Analysis of Newspaper Articles on Fine Particle Matter Using Text Mining Techniques (텍스트마이닝을 이용한 미세먼지 관련 신문기사 분석)

  • Yang, Ji-Yeon
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • This study aims to examine the trend and characteristics of newspaper articles concerned with fine particle matter. Newspaper articles since 1995 collected from Bigkinds were analyzed using text mining techniques, sentiment analysis and regression analysis. Air pollution measurement and domestic pollutants appeared frequently previously, but "China" became the keyword in the 2010s along with political action, the effects on the health, AD/PR, and domestic pollutants. Korea JoongAng Daily, Hankyoreh and Kyunghyang Shinmun have had more focused on political regulations whereas most regional daily newspapers on emission sources and reduction measures at the regional level. The results of this study are expected to be used as a reference for understanding the trend of newspaper articles. Future work includes further analysis and discussion of fine particle pollution condition and news reports in the post-COVID era.

Researches on Dark Matter Using e+ e- Collider

  • Yeo, Insung;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Higgs boson enables the Standard Model (SM) to be established. However, we do not know much about dark matter which occupies approximately six times of the SM particles in universe besides having mass. The interactions of dark matter is much weaker than that of the SM. Further, its mass range is very wide, from the order of eV to PeV. Therefore, many experiments have contributed to search for dark matter by indirect, direct and accelerator research. This paper reviews researches on dark matter using accelerator, especially the $e^+e^-$ collider, from the viewpoint of experimental high energy physicists.

Spatial Interpretation of Monsoon Turbid-water Environment in a Reservoir (Yongdam) Discharging Surface Water, Korea (표층수를 방류하는 저수지(용담호)에서 몬순 탁수환경의 공간적 해석)

  • Shin, Jae-Ki;Hur, Jin;Lee, Heung-Soo;Park, Jae-Chung;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.933-942
    • /
    • 2006
  • In this study, temperature, turbidity, suspended paniculate matter (SPM) distribution and mineral characteristics were investigated to explain spatial distribution of the turbid-water environment of Yongdam reservoir in July, 2005. Six stations were selected along a longitudinal axis of the reservoir and sampling was conducted in four depths of each station. Water temperature was showed the typical stratified structure by the effects of irradiance and inflow. Content of inorganic matter in suspended particles increased with the concentration of suspended particulate matter (SPM) due to the reduction of ash-free dry matter (AFDM). Turbidity ranged from 0.6 to 95.1 NTU and the maximum turbidity value of each station sharply increased toward downstream from upstream. The high turbidity layers were located at the depth between 12~16 m. Particle size ranged from 0.435 to $482.9{\mu}m$. day and silt-sized particles corresponded 91.9~98.9% and 1.1~8.0% in total numbers of SPM, respectively. Turbidity showed high correlations with clay (r=0.763, p<0.05) and silt content (r=0.870, p<0.05).Inorganic matter content (r=0.960, p<0.01) was more correlated with turbidity than organic matter (r=0.823, p<0.05). Mineral characterization using x-ray diffraction and electron probe microanalyzer demonstrated that the major minerals contained in the SPM were kaolinite, illite, vermiculite and smectite. As results of this study, surface water discharge as well as small size of the SPM were suggested as long-term interfering factors in settling down the turbid water in the reservoir.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Comparison of Nano-particle Emission Characteristics in CI Engine with Various Biodiesel Blending Rates by using PPS System (PPS시스템 이용 바이오디젤 혼합율에 따른 극미세입자 배출특성 비교)

  • Kwon, J.W.;Kim, M.S.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • The main purpose of this study is to analyze and compare the nano-particle emission characteristics by 3-different biodiesel blending rates in a CI engine. Nano-particle number density emitted from various operating conditions of compression ignition engine can be investigated by using the PPS (Pegasor Particle Sensor) system. Namely, some particle charged through the corona discharge in real-time can be measured by PPS system. Under the steady state operation of the 2.0L CRDi diesel engine with different operating condition and biodiesel blending rates, the nano-particle number density was analyzed at the downstream position of DOC system. As this research result, more engine load speed and higher the concentration of biodiesel blending rate showed that the nano-particle number density decreases. Also we found that DOC system for clean diesel engine is effectively useful instrument to reduce diesel particulate matter as resource of nano-particle generation.

Experimental Study on the Size Distribution of Diesel Particulate Matter (DPM) (디젤 입자상물질의 크기분포 특성에 관한 실험적 연구)

  • 연익준;권순박;이규원
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Diesel particulate matter (DPM) is known to be one of the major harmful emissions produced by diesel engines. The majority of diesel particles are in the range of smaller than $I{\mu}\textrm{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Diesel particles are known to have deleterious effects upon human health because they penetrate human respiratory tract and have negative effects on the health. The measurement of the number distribution of nanometer size particles (nanoparticles) in the diesel exhaust emission is important in order to evaluate their environmental and health impact, and to develop new types of diesel particulate filters. In this study, we directly sampled particulate matters emitted from a diesel truck mounted on the chassis dynamometer by a flow separator and dilution system, and measured the nanoparticles using two types of differential mobility analyzers combined with a Faraday cup electrometer (FCE) and a condensation particle counter (CPC). The particle size distributions were analyzed by changing engine operation condition, i.e. ratio of engine loading. The total number concentration of particles were increased with the engine loading ratio and the nanoparticles (less than 50nm) were affected by hydrocarbon (HC) concentration in the diesel exhaust.