Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.2.67

Researches on Dark Matter Using e+ e- Collider  

Yeo, Insung (Korea Institute of Science and Technology Information)
Cho, Kihyeon (Korea Institute of Science and Technology Information)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.2, 2018 , pp. 67-74 More about this Journal
Abstract
Higgs boson enables the Standard Model (SM) to be established. However, we do not know much about dark matter which occupies approximately six times of the SM particles in universe besides having mass. The interactions of dark matter is much weaker than that of the SM. Further, its mass range is very wide, from the order of eV to PeV. Therefore, many experiments have contributed to search for dark matter by indirect, direct and accelerator research. This paper reviews researches on dark matter using accelerator, especially the $e^+e^-$ collider, from the viewpoint of experimental high energy physicists.
Keywords
dark matter; $e^+e^-$ collider; particle physics; astronomical physics;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alexander J, Battaglieri M, Echenard B, Essig R, Graham M, et al., Dark sectors 2016 workshop: community report, eprint arXiv:1608.08632 (2016).
2 ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with ATLAS detector at the LHC, Phys. Lett. B 716, 1-29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020   DOI
3 BABAR Collaboration, Search for invisible decays of a light scalar in radiative transitions ${\nu}3S{\rightarrow}{\gamma}A0$, eprint arXiv: 0808.0017 (2008).
4 BABAR Collaboration, Search for production of invisible final states in single-photon decays of ${\gamma}(1S)$, Phys.Rev. Lett. 107, 021804 (2011). https://doi.org/10.1103/PhysRevLett.107.021804   DOI
5 BABAR Collaboration, Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108, 211801 (2012). https://doi.org/10.1103/PhysRevLett.108.211801   DOI
6 BABAR Collaboration, Search for di-muon decays of a low-mass Higgs boson in radiative decays of the ${\gamma}(1S)$, Phys. Rev. D 87, 059903 (2013). https://doi.org/10.1103/PhysRevD.87.059903   DOI
7 BABAR Collaboration, Search for a dark photon in $e^+e^-$ collisions at BABAR, eprint arXiv:1406.2980 (2014).   DOI
8 BABAR Collaboration, Search for a muonic dark force at BABAR, Phys. Rev. D 94, 011102 (2016). https://doi.org/10.1103/PhysRevD.94.011102   DOI
9 Batell B, Pospelov B, Ritz A, Probing a secluded U(1) at Bfactories, Phys. Rev. D. 79, 115008 (2009). https://doi.org/10.1103/PhysRevD.79.115008   DOI
10 Belle Collaboration, Search for the dark photon and the dark Higgs boson at Belle, Phys. Rev. Lett. 114, 211801 (2015). https://doi.org/10.1103/PhysRevLett.114.211801   DOI
11 Belle Collaboration, Search for a dark vector gauge boson decaying to ${\pi}^+{\pi}^-$ using ${\eta}{\rightarrow} {\pi}^+{\pi}^-{\gamma}$ decays, Phys. Rev. D 94, 092006 (2016). https://doi.org/10.1103/PhysRevD.94.092006   DOI
12 BESIII Collaboration, Dark photon search in the mass range between 1.5 and $3.4GeV/c^2$, Phy. Lett. B 774, 252-257 (2017). https://doi.org/10.1016/j.physletb.2017.09.067   DOI
13 Cho K, e-Science paradigm for astroparticle physics at KISTI, J. Astron. Space Sci. 33, 63-67 (2016a). https://doi.org/10.5140/JASS.2016.33.1.63   DOI
14 Cho K, Computational science and the search for dark matter, New Phys. Sae Mulli 66, 950-956 (2016b). https://doi.org/10.3938/NPSM.66.950   DOI
15 Kacurova G, Numerical modelling of convection-diffusionreaction problems with free boundary in 1D, eprint arXiv:0909.0363 (2009).
16 Cho K, Computational science-based research on dark matter at KISTI, J. Astron. Space Sci. 34, 153-159 (2017). https://doi.org/10.5140/JASS.2017.34.2.153   DOI
17 CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30-61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021   DOI
18 Essig R, Mardon J, Papucci M, Volansky T, Zhong YM, Constraining light dark matter with low-energy $e^+e^-$colliders, J. High Eneregy Phys. 11, 167 (2013). https://doi.org/10.1007/JHEP11(2013)167   DOI
19 KLOE-2 Collaboration, Search for dark Higgsstrahlung in $e^+e^-{\rightarrow}{\mu}^+{\mu}^-$ and missing energy events with the KLOE experiment, Phy. Lett. B 747, 365-372 (2015). https://doi.org/10.1016/j.physletb.2015.06.015   DOI
20 KLOE-2 Collaboration, Dark forces searches at KLOE-2, Acta Phys. Polon. B47, 461-470 (2016a). https://doi.org/10.5506/APhysPolB.47.461
21 KLOE-2 Collaboration, Limit on the production of a new vector boson in $e^+e^-{\rightarrow}U{\gamma},\;U{\rightarrow}{\pi}^+{\pi}^-$ with the KLOE experiment, Phy. Lett. B 757, 356-361 (2016b). https://doi.org/10.1016/j.physletb.2016.04.019   DOI
22 Mimasu K, Sanz V, ALPs at colliders, eprint arXiv:1409.4792 (2014).
23 Shuve B and Yavin I, Dark matter progenitor: Light vector boson decay into sterile neutrinos, Phys. Rev. D 89, 113004 (2014). https://doi.org/10.1103/PhysRevD.89.113004   DOI