• 제목/요약/키워드: Particle interaction model

검색결과 131건 처리시간 0.022초

등방성 난류에서 침강하는 무거운 입자의 거동 (On behavior of settling heavy particles in isotropic turbulence)

  • 정재달;여경민;이창훈
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2006
  • Particle suspension is frequently observed in many natural flows such as in the atmosphere and the ocean as well as in various engineering flows. Recently, airborne micro or nano-scale particles in atmosphere attract much attention from environmental society since small particle cause serious environmental problems in the industrialized areas. Also, the characteristics of such heavy particles' behavior is quite different from its fluid particles because the inertia force and buoyance force acting on the heavy particles are different than those acting on fluid particles. Therefore, our studies is to investigate the characteristics of the behavior of heavy particles considering the inertia effect with or without gravity effect, but do not consider modification of turbulence by the particles, that is one-way interaction. We carried out direct numerical simulation of isotropic turbulence with particles under the Stokes drag assumption for a spherical particle. These results can be used in the development of a stochastic model for predicting particle's behavior.

  • PDF

복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션 (Random Walk Simulation of Atmospheric Dispersion on Surface Urbanization over Complex Terrain)

  • 이순환;이화운;김유근
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.67-83
    • /
    • 2002
  • The coupled model (SMART) of dynamic meteorology model and particle dispersion model was developed. The numerical experiment on the relationship between change of land use and diffusion behavior in complex terrain was carried out using this model. It tried to investigate the change of particle diffusion behavior and local weather under the condition in which land-land breeze and sea breeze and mountain breeze intermingled. The numerical experiment results are as follows; 1) The more complicated local circulation field of the interaction of sea breeze, mountain breeze and Land -land breeze is formed. Then, the region circulation in which the urbanization is specific by location of the region is strengthened and is weakened. 2) Though in the region with dominant sea breeze, Land-land breeze does not appear directly, the progress of the sea wind to the inland is affected. 3) In the prediction of the air diffusion, emission high quality and accurate information of the emission site are important. That is to say, the dispersion predicting result which emission high quality and small error of the site perfectly vary for Land - land breeze in the effect may be brought about.

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

발전소 굴뚝에서의 입자 분산에 대한 수치해석 (Numerical study of particle dispersion from a power plant chimney)

  • 심정보;유동현
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

Identification of flexible vehicle parameters on bridge using particle filter method

  • Talukdar, S.;Lalthlamuana, R.
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.21-43
    • /
    • 2016
  • A conditional probability based approach known as Particle Filter Method (PFM) is a powerful tool for system parameter identification. In this paper, PFM has been applied to identify the vehicle parameters based on response statistics of the bridge. The flexibility of vehicle model has been considered in the formulation of bridge-vehicle interaction dynamics. The random unevenness of bridge has been idealized as non homogeneous random process in space. The simulated response has been contaminated with artificial noise to reflect the field condition. The performance of the identification system has been examined for various measurement location, vehicle velocity, bridge surface roughness factor, noise level and assumption of prior probability density. Identified vehicle parameters are found reasonably accurate and reconstructed interactive force time history with identified parameters closely matches with the simulated results. The study also reveals that crude assumption of prior probability density function does not end up with an incorrect estimate of parameters except requiring longer time for the iterative process to converge.

Effective viscosity of bidisperse suspensions

  • Koo Sangkyun;Song Kwang Ho
    • Korea-Australia Rheology Journal
    • /
    • 제17권1호
    • /
    • pp.27-32
    • /
    • 2005
  • We determine the effective viscosity of suspensions with bidisperse particle size distribution by modifying an effective-medium theory that was proposed by Acrivos and Chang (1987) for monodisperse suspensions. The modified theory uses a simple model that captures some important effects of multi-particle hydrodynamic interactions. The modifications are described in detail in the present study. Estimations of effective viscosity by the modified theory are compared with the results of prior work for monodisperse and bidisperse suspensions. It is shown that the estimations agree very well with experimental or other calculated results up to approximately 0.45 of normalized particle volume fraction which is the ratio of volume faction to the maximum volume fraction of particles for bidisperse suspensions.

파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션 (Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation)

  • 남정우;황성철;박종천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達 (Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows)

  • 이종욱;이준식;이택식
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.551-560
    • /
    • 1988
  • 본 연구에서는 해석하려는 시스템의 유동 및 열전달 현상의 개념도를 Fig.1 에 나타내었다. 고체 입자는 윗부분 홈으로부터 분사되어, 선택적 투과면을 통해서 입사되는 복사열을 흡수 하며, 기체는 아래 또는 위의 홈 부분으로부터 들어와서 고체 입자와의 대류열전달로 가열이 된다. 기차게 아래 홈에서부터 분사되는 경우 대류에 의해 가열된 기체가 역성층화로 인해 부력을 받게 되어, 고체 입자의 하강 속도가 감 소할 때 입자의 체류 시간의 증가에 따른 복사열의 흡수효과에 대하여 고찰하였으며 입자의 크기, 투사 복사량, 분사속도, 입자의 질량유량 등을 파라미터로 하여 이들의 변화에 따른 영향을 규명하였다. 2-방연계를 고려한 2-방정식 모델을 구성하고 고체 입자에 대하여는 Lagrangian 방법으로 기술하였으며 수치해석에 있어 유한차분법을 도 입하고 두 상간의 상호연계는 PSI-Cell 방법을 이용하였고 복사 열유속은 2-유속 모델 (two-flux model)을 도입하여 계산하였다.

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.