• Title/Summary/Keyword: Particle image velocimetry technique

Search Result 196, Processing Time 0.031 seconds

PIV measurement of oscillatory flow in a micro-channel as a bronchiole model

  • LEE Won-je;KAWAHASHI Massaki;HIRAHARA Hiroyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.125-134
    • /
    • 2004
  • The improvement of artificial respiration method has brought about the decrease in mortality of pulmonary diseases patients. Various respiratory curative methods, inclusive of HFOV (High Frequency Oscillatory Ventilation), have been developed for more effectual and less harmful management of acute respiratory failure. However, the mechanism of gas transfer and diffusion in a bronchiole has not yet been clarified in detail. As a first approach to the problem, we measured oscillatory flows in a Y-shaped micro-channels as bronchiole model by micro Particle Image Velocimetry(micro PIV). In order to establish the fundamental technique of PIV measurements on oscillatory air flow in a micro-channel, we used about 500-nm-diameter incense smoke particles, a diode laser, a high speed camera including an objective lens, and a HFOV, which is effective technique for medical care of pulmonary disease patients, especially, infants. The bronchiole model size is that parent tube is $500\{mu}m$ width and $500\{mu}m$ depth, and daughter tubes are $450\{mu}m$ width and $500\{mu}m$ depth. From this study made on the phenomenon of fluid in micro size bronchus branch of a lung, we succeeded to get time series velocity distribution in a micro scale bronchial mode. The experimental results of velocity distribution changing with time obtained by micro PIV can give fundamental knowledge on oscillatory airflow in micro-channel.

  • PDF

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

Measurements of Remote Micro Displacements of the Piping System and a Real Time Diagnosis on Their Working States Using a PIV and a Neural Network (PIV와 신경망을 이용한 배관시스템 원격 미세변위 측정과 실시간 작동상태 진단)

  • Jeon, Min Gyu;Cho, Gyeong Rae;Oh, Jung Soo;Lee, Chang Je;Doh, Deog Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.264-274
    • /
    • 2013
  • Piping systems play an important role in gas and oil transferring system. In the piping system, there are many elements, such as valves and flow meters. In order to check their normal operating conditions, each signal from each element is displayed on the monitor in the pipe control room. By the way, there are several accidental cases in the piping system even if all signals from the local elements are judged to be normal on the monitor in the control room. Further, opposite cases often happen even the monitor shows abnormal while the local elements work normal. To overcome this abnormal functions, it is not so easy to construct the environment in which sensors detecting the working states of all elements installed in the piping system. In this paper, a new non-contact measurement technique which can calculate the elements' delicate displacements by using a PIV(particle image velocimetry) and diagnose their working states by using a neural network is proposed. The measurement system consists of a host computer, a micro system, a telescope and a high-resolution camera. As a preliminary test, the constructed measurement system was applied to measure delicate vibrations of mobile phones. For practical application, a pneumatic system was measured by the constructed system.

Laboratory Observations of Nearshore Flow Patterns Behind a Single Shore-Parallel Submerged Breakwater (해안선에 평행한 단일 잠제 후면 연안 흐름패턴 관측 수리실험)

  • Choi, Junwoo;Roh, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • In order to understand the efficacy of submerged breakwater constructed for the beach protection, laboratory experiments were carried out by observing the characteristics of flow around a single shore-parallel submerged breakwater. The velocity field near the shoreline was measured by utilizing the LSPIV (Large-Scale Particle Image Velocimetry) technique, and mean surface and wave height distributions were observed around the submerged breakwater, according to various combinations of incident waves and submerged breakwaters. In this experiment, it was found that the mean flow pattern behind the submerged breakwater was determined by the balance among the gradients of mean water surface and excess wave-momentum flux (i.e., radiation stress tensors) which interact with the wave-induced current developed by the gradients on the rear and the side of the submerged breakwater. The divergent and convergent flow patterns behind the submerged breakwater (i.e., accretion and erosion response) of the numerical study of Ranasinghe et al.(2010) were observed in the measured velocity distributions, and their empirical formula mostly agreed with the experimental results. However, for some cases in this experiment, it was difficult to say that the flow pattern was one of them and was agreed with the empirical formula.

Experimental Study on Flow Characteristic of L-type Groyne (L형 수제주변 흐름특성 변화에 대한 실험연구)

  • Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Sung-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.653-667
    • /
    • 2008
  • The hydraulic model test for the L-type Groynes with "ㄱ" shape were conducted to analyze flow characteristics around these groynes. The results of model tests should be used for the fundamental information to design the L-type Groyne constructed in the field. Main hydraulic factors such as the velocity and thalweg line changes in main channel and separation area were analyzed in this study. The thalweg line is stream line where the maximum velocity occurs, and the separation area is a boundary of main flow and recirculation zone. Model tests with 5 different arm-lengths of the L-type Groynes were conducted changing the velocity. The LSPIV(Large Scale Particle Image Velocimetry) technique was used to measure and analyze the flow variation around the L-type Groynes. The velocity in main channel was increased 1.5 times and there was no effects of different groyne arm-length on the velocity changes. The width of thalweg lines $(T_{CL})$ was changed to $55{\sim}58%$ of chanel width, and the Froude number did not affect on the thalweg line $(T_{CL})$ and separation line $(S_h)$ changes.

Analysis of Current Distribution around a Scaled-down Abalone System to determine the cause of mass mortality of abalone, Haliotis discus hannai (Ino, 1952) (북방전복 Haliotis discus hannai (Ino, 1952) 의 폐사규명을 위한 모형 양식시설 주변의 조류 분포 분석)

  • Cha, Bong-Jin;Choi, Yang-Ho;Yang, Young-Soo;Park, Min-Woo;Kim, Byeong-Hak;Pean, Yong-Bum
    • The Korean Journal of Malacology
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • This study is aimed at figuring out the reasons of the mass mortality of abalone and the increase in its mortality rate in the sea cage. The study suggests that lack seawater circulation in an abalone aquaculture cage is an important culprit for it. We analyzed the current distribution around a 1/20 scaled-down abalone unit cage of 4 rows and 10 columns by fluid flow visualization technique (PIV : Particle Image Velocimetry). The speed of current in the model cage definitely slowed down in the first column of a unit cage. We also observed currents going down to the bottom of a water tank from the unit cages placed in the middle. The speed of wakes behind inside the row in the middle was slower than that outside the row. Water velocity inside and outside a real abalone cage at Nowha Island adjacent to Wan Island was measured to verify results from the tank test. The speed of current in front of the cage by 2 m was 0.11 m/sec while it was only 0.0009 m/sec inside the cage. It had similar findings with those of a tank test.

Experimental Verification on the Effect of the Gap Flow Blocking Devices Attached on the Semi-Spade Rudder using Flow Visualization Technique (유동가시화를 이용한 혼-타의 간극유동 차단장치 효과에 관한 실험적 검증)

  • Shin, Kwangho;Suh, Jung-Chun;Kim, Hyochul;Ryu, Keuksang;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.324-333
    • /
    • 2013
  • Recently, rudder erosion due to cavitation has been frequently reported on a semi-spade rudder of a high-speed large ship. This problem raises economic and safety issues when operating ships. The semi-spade rudders have a gap between the horn/pintle and the movable wing part. Due to this gap, a discontinuous surface, cavitation phenomenon arises and results in unresolved problems such as rudder erosion. In this study, we made a rudder model for 2-D experiments using the NACA0020 and also manufactured gap flow blocking devices to insert to the gap of the model. In order to study the gap flow characteristics at various rudder deflection angles($5^{\circ}$, $10^{\circ}$, $35^{\circ}$) and the effect of the gap flow blocking devices, we carried out the velocity measurements using PIV(Particle Image Velocimetry) techniques and cavitation observation using high speed camera in Seoul National University cavitation tunnel. To observe the gap cavitation on a semi-spade rudder, we slowly lowered the inside pressure of the cavitation tunnel until cavitation occurred near the gap and then captured it using high-speed camera with the frame rate of 4300 fps(frame per second). During this procedure, cavitation numbers and the generated location were recorded, and these experimental data were compared with CFD results calculated by commercial code, Fluent. When we use gap flow blocking device to block the gap, it showed a different flow character compared with previous observation without the device. With the device blocking the gap, the flow velocity increases on the suction side, while it decreases on the pressure side. Therefore, we can conclude that the gap flow blocking device results in a high lift-force effect. And we can also observe that the cavitation inception is delayed.

Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements (자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정)

  • Kim, Jin-Seok;Sung, Jae-Yong;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

Investigation of Turbulence Characteristics of Defect Law Region over Flat plate (평판 위 흐름 Defect Law 영역의 난류 특성 연구)

  • Suh, Sung-Bu;Park, Il-Ryong;Jung, Kwang-Hyo;Lim, Jung-Gwan;Kim, Kwang-Soo;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.

An Experimental Study on the Generation of Air-core with Swirl Flow in a Horizontal Circular Tube (수평원통 관에서 선회유동의 공기동 발생에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.922-930
    • /
    • 2004
  • An experimental investigation was performed to study on the generation of air bubble and air core with swirling flow in a horizontal cicular tube. To determine some characteristics of the flow, 2D PIV technique is employed for velocity measurement in water. The experimental rig is manufactured from an acryl tube. The test tube diameter of 80mm, and a length of 3000mm. The used algorithm is the gray leve cross-correlation method(Kimura et al. 1986). An Ar-ion laser is used and the light from the laser(500mW) passes through a probe to make two-dimensional light sheet. In order to make coded images of the tracer particles on one frame, an AOM(Acoustic-Optical Modulator) is used. The maximum axial velocities showed near the test tube wall at y/D =0.1 and y/D =0.9 along the test tube. The higher Reynolds number increase, the lower axial velocities are showed in the center of the test tube. The air bubbles are generated from Re =10,000 and developed into air core from the recirculating water pump rpm equal 30Hz. The pressure and temperature are measured across the test tube at X/D=3.33.