• Title/Summary/Keyword: Particle deposition

Search Result 572, Processing Time 0.027 seconds

Coating behavior of zirconia film fabricated by granule spray in vacuum (상온진공 과립분사에 의한 지르코니아 필름의 코팅거동)

  • Tungalaltamir, Ochirkhuyag;Kang, Young-Lim;Park, Woon-Ik;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • The Granule Spray in Vacuum (GSV) process is a method of forming a dense nanostructured ceramic coating film by spraying ceramic granules on a substrate at room temperature in a vacuum. In the Granule Spray, the granules made by agglomerating particles with the size from submicrometer to micrometer can be sprayed into the substrate. Once the granules were squashed upon collision with the substrate, they become several dozens of nanometer-sized crystals in vacuum process. The zirconia of the monoclinic phase transform into tetragonal phase at 1150℃. At this time, its volume is changed by about 6.5 %. For this reason, it is widely held that it is difficult to acquire a compact of monoclinic zirconia sinter. In this study, the effect of particle treatment temperature and standoff distance on the substrate of zirconia granules were investigated in GSV. Also, particle treatment temperature, standoff distance, coating efficiency, and microstructure of the film were considered in forming the monoclinic zirconia coating film in GSV without any heating process. The deposited films exhibited monoclinic zirconia phase without any other detectable phase by X-ray diffractometer (XRD).

The Status of 3D Printing Industry and Researches on Exposure to Hazards When Using Metal Materials (3D프린팅 산업 및 금속소재 사용시 유해인자 노출 연구 현황)

  • Hae Dong Park;Leejun HUH
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We attempted to provide an overview of the laws and current state of the 3D printing industry in South Korea and around the world, using the annual industry surveys and the Wohler report. Additionally, we reviewed articles relating to the potential exposure to hazards associated with 3D printing using metal materials. In South Korea, there were 406 3D printing-related businesses, employing 2,365 workers, and the market size was estimated at 455.9 billion won in 2021. Globally, the average growth rate of the 3D printing industry market over the past 10 years was 27.4%, and the market size was estimated at $11.8 billion in 2019. The United States had the highest cumulative installation ratio of industrial 3D printers, followed by China, Japan, Germany, and South Korea. A total of 6,168 patents related to 3D printing were registered in the US between 2010 and 2019. Harmful factors during metal 3D printing was mainly evaluated in the powder bed fusion and direct energy deposition printing types, and there is a case of material extrusion type with metal additive filaments. The number, mass, size distribution, and chemical composition of particles were mainly evaluated. Particle concentration increases during the opening of the chamber or post-processing. However, operating the 3D printer in a ventilated chamber can reduce particle concentration to the background level. In order to have a safe and healthy environment for 3D printing, it is necessary to accumulate and apply knowledge through various studies.

Monte Carlo simulation of spatial resolution of lens-coupled LYSO scintillator for intense pulsed gamma-ray imaging system with large field of view

  • Guoguang Li;Liang Sheng;Baojun Duan;Yang Li;Dongwei Hei;Qingzi Xing
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2650-2658
    • /
    • 2024
  • In this paper, we use a Monte Carlo (MC) simulation based on Geant4 to investigate the influence of four parameters on the spatial resolution of the lens-coupled lutetium yttrium orthosilicate (LYSO) scintillator, including the thickness of the LYSO scintillator, the F-number and minification factor of the lens, and the incident position of the gamma-rays. Simulation results show that when the gamma-rays are incident along the lens axis, the smaller the thickness, the larger the F-number, the larger the minification factor, the higher the spatial resolution, with an isotropic point spread function (PSF). As the incident position of the gamma-rays deviates from the lens axis, the spatial resolution decreases, and the PSF becomes anisotropic. In addition, by analyzing the whole physical process of the lens-coupled LYSO scintillator from gamma-rays to secondary electrons to fluorescence photons, we aim to provide a detailed analysis of the influence of each parameter on the spatial resolution. The results show that the PSF of the secondary electrons energy deposition is almost constant in the simulation, which determines the upper limit of the spatial resolution. Meanwhile, the dispersion process of the fluorescence photons can explain the reason why each parameter affects the spatial resolution.

Fabrication of intermediate-temperature solid oxide fuel cells with La0.6Sr0.4CoO3-𝛿 nanowires based on polycarbonate membrane filter (Polycarbonate 멤브레인 필터 기반 La0.6Sr0.4CoO3-𝛿 나노와이어가 적용된 중온형 고체산화물 연료전지 제작)

  • Kang Han;Young Gyun Goh;Gyu Jin Hwang;Hyun Ho Shin;Sung Soo Shin
    • Particle and aerosol research
    • /
    • v.20 no.3
    • /
    • pp.95-102
    • /
    • 2024
  • Enhancing the oxygen surface exchange reaction by increasing the specific surface area of the electrode is a promising structural approach to lowering the operating temperature of solid oxide fuel cells (SOFCs). Nanowire structures, due to their high specific surface area and lower tortuosity of ion and electron conduction pathways, play a vital role in enhancing SOFC electrode performance. In this study, we synthesized La0.6Sr0.4CoO3-𝛿 (LSC) nanowires using a polycarbonate membrane filter as a nanotemplate and applied them to the cathode for intermediate-temperature SOFC fabrication. The fabricated cell exhibited a 10% increase in peak power density at 650℃, achieving 0.506 W·cm-2, compared to cell using only commercial LSC powder. Furthermore, distribution of relaxation times analysis revealed a 15% reduction in area-specific polarization resistance in the mid-frequency range. These findings demonstrated that the electrode with LSC nanowires fabricated through electrospray deposition can significantly improve electrochemical performance of intermediate-temperature SOFC.

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

A Study on the Properties of $Al_2$ $O_3$ and $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N Coatings Produced by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학 증착법에 의한 $Al_2$ $O_3$ 단층피막과 $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N 이중피막의 제조 및 특성에 관한 연구)

  • 손경석;이승훈;이동각;임주완;이후철;이정중
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • $Al_2$$O_3$ coatings were deposited on M2 high speed steels by the plasma enhanced chemical vapor deposition (PECVD) process, using a gas mixture of AlC1$_3$, $H_2$, $CO_2$ and Ar $Al_2$$O_3$ coatings had interference color and showed amorphous phase. $A1_2$X$A1_3$/($Ti_{0.5}$ /$Al_{0.5}$ )N double layer coatings were produced in the sequence of substrate $NH_3$ plasma pretreatment, ($Ti_{0.5}$$Al_{0.5}$)N depoition process, $Al_2$$O_3$ deposition process. $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings showed NaCl structure in ( $Ti_{0.5}$A $l_{0.5}$)N layer and amorphous phase in A1$_2$ $O_3$ layer. It was shown that $Al_2$ $O_3$ columns continuously grew onto ( $Ti_{0.5}$A $l_{0.5}$)N columns. ( $Ti_{0.5}$A $l_{0.5}$)N single coating and $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coating were oxidized at $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$ for 1hr, 3hr in atmosphere. At 80$0^{\circ}C$, single layer coatings were oxidized, which were examined substrate oxide particle. But $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings maintained the asdeposited state. Therefore, $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings have moreexcellent oxidation resistance than ( $Ti_{0.5}$A $l_{0.5}$)N single layer coatings.X> 0.5/)N single layer coatings.s.

  • PDF

A Study on the Characteristics of CdS Thin Film by Annealing Time Change (열처리시간 변화에 의한 CdS 박막 특성에 관한연구)

  • Chung, Jae-Pil;Park, Jung-cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.438-443
    • /
    • 2021
  • This paper uses a multiplex deposition sputter system and aims to improve transmittance and reduce production costs by depositing a CdS thin film on an ITO glass substrate. When manufacturing CdS thin films, we wanted to find excellent conditions when manufacturing solar cells by changing heat treatment time. It was observed that thickness and sheet resistance were not significantly different depending on heat treatment time changes. The specific resistance was measured from a minimum of 6.68 to a maximum of 6.98. When the heat treatment time was more than 20 minutes, the transmittance was measured to be more than 75%. When the heat treatment time was 10 minutes, the bandgap was 3.665 eV and more than 20 minutes was 3.713 eV, which was measured as the same result. The XRD analysis showed that the structure of CdS was hexagonal and only CdS thin films were deposited without any other impurities. The result of calculating the FWHM was a maximum of 0.142 when the heat treatment time was 20 minutes, and a minimum of 0.133 when the heat treatment time was 40 minutes, so there was no significant difference in the FWHM when the heat treatment time was changed. The particle size was measured at 11.65 Å when the heat treatment time was 40 minutes, and at 10.93 Å when the heat treatment time was 20 minutes.