Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 12175183).
References
- T.J. Murphy, C.W. Barnes, R.R. Berggren, P. Bradley, S.E. Caldwell, R.E. Chrien, J. R. Faulkner, P.L. Gobby, N. Hoffman, J.L. Jimerson, K.A. Klare, C.L. Lee, J. M. Mack, G.L. Morgan, J.A. Oertel, F.J. Swenson, P.J. Walsh, R.B. Walton, R. G. Watt, M.D. Wilke, D.C. Wilson, C.S. Young, S.W. Haan, R.A. Lerche, M.J. Moran, T.W. Phillips, T.C. Sangster, R.J. Leeper, C.L. Ruiz, G.W. Cooper, L. Disdier, A. Rouyer, A. Fedotoff, V.Yu Glebov, D.D. Meyerhofer, J.M. Sources, C. Stockl, J. A. Frenje, D.G. Hicks, C.K. Li, R.D. Petrasso, F.H. Seguin, K. Fletcher, S. Padalino, R. K. Fisher, Nuclear diagnostics for the National Ignition facility, Rev. Sci. Instrum. 72 (2001) 773-779, https://doi.org/10.1063/1.1319356.
- D.A. Lemieux, H.B. Barber, G.P. Grim, T. Archuleta, V. Fatherley, D. Fastje, Testing of a gamma ray imaging system at the high intensity gamma source, in: Target Diagnostics Physics and Engineering for Inertial Confinement Fusion III, 2014, https://doi.org/10.1117/12.2066254.
- J.A. Frenje, Nuclear diagnostics for inertial confinement fusion (ICF) plasmas, Plasma Phys. Contr. Fusion 62 (2020), https://doi.org/10.1088/1361-6587/ab5137.
- Y. Kim, H.W. Herrmann, Gamma-ray measurements for inertial confinement fusion applications, Rev. Sci. Instrum. 94 (2023), https://doi.org/10.1063/5.0126969.
- P. Durrant, M. Dallimore, I. Jupp, D. Ramsden, The application of pinhole and coded aperture imaging in the nuclear environment, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 422 (1-3) (1999) 667-671, https://doi.org/10.1016/S0168-9002(98)01014-6.
- J. Zhang, Q. Yi, L. Li, F. Zhang, D. Chen, J. Chen, Z. Xi, H. Xie, J. Yang, F. Chen, D. Tang, Y. Chu, Simulation and experimental study of the angle-dependent sensitivity of the thick pinhole used for gamma imaging, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 915 (2019) 24-30, https://doi.org/10.1016/j.nima.2018.10.163.
- J.M. Mack, R.R. Berggren, S.E. Caldwell, C.R. Christensen, S.C. Evans, J. R. Faulkner Jr., R.L. Griffith, G.M. Hale, R.S. King, D.K. Lash, R.A. Lerche, J. A. Oertel, D.M. Pacheco, C.S. Young, Remarks on detecting high-energy deuterium-tritium fusion gamma rays using a gas Cherenkov detector, Radiat. Phys. Chem. 75 (2006) 551-556, https://doi.org/10.1016/j.radphyschem.2005.12.026.
- V.E. Fatherley, D.N. Fittinghoff, R.L. Hibbard, H.J. Jorgenson, J.I. Martinez, J. A. Oertel, D.W. Schmidt, C.S. Waltz, C.H. Wilde, P.L. Volegov, Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility, Rev. Sci. Instrum. 89 (2018), https://doi.org/10.1063/1.5039328.
- D.N. Fittinghoff, N. Birge, V. Geppert-Kleinrath, Neutron imaging of inertial confinement fusion implosions, Rev. Sci. Instrum. 94 (2023), https://doi.org/10.1063/5.0124074.
- R. Mao, L. Zhang, R.-Y. Zhu, Optical and scintillation properties of inorganic scintillators in high energy physics, nuclear science, IEEE Transactions on 55 (2008) 2425-2431, https://doi.org/10.1109/TNS.2008.2000776.
- M. Zhu, H. Qi, M. Pan, Q. Hou, B. Jiang, Y. Jin, H. Han, Z. Song, H. Zhang, Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals, J. Cryst. Growth 490 (2018) 51-55, https://doi.org/10.1016/j.jcrysgro.2018.03.015.
- F. Loignon-Houle, S.A. Charlebois, R. Fontaine, R. Lecomte, Monte Carlo simulations of energy, time and spatial evolution of primary electrons generated by 511 keV photons in various scintillators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1030 (2022), https://doi.org/10.1016/j.nima.2022.166449.
- D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker, R. E. Muenchausen, R.C. Sze, Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5, J. Appl. Phys. 88 (2000) 7360-7362, https://doi.org/10.1063/1.1328775.
- B. Wan, F. Yang, D. Ding, S. Zhao, J. Xie, L. Chen, J. Shi, Effects of yttrium content on intrinsic radioactivity energy spectra of LYSO:Ce crystals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. (2021) 1001, https://doi.org/10.1016/j.nima.2021.165263.
- W. Yan, B. Li, B. Duan, G. Song, Y. Song, J. Ma, Temperature dependence of luminescence characteristics of LYSO:Ce scintillator under x-ray excitation, AIP Adv. 12 (2022), https://doi.org/10.1063/5.0091343.
- L.J. Meng, G. Fu, Investigation of the intrinsic spatial resolution of an intensified EMCCD scintillation camera, IEEE Trans. Nucl. Sci. 55 (2008) 2508-2517, https://doi.org/10.1109/TNS.2008.2004278.
- M. Holstensson, M. Partridge, S.E. Buckley, G.D. Flux, The effect of energy and source location on gamma camera intrinsic and extrinsic spatial resolution: an experimental and Monte Carlo study, Phys. Med. Biol. 55 (2010) 1735, https://doi.org/10.1088/0031-9155/55/6/013.
- J. Zhu, X. Ouyang, D. Chen, Monte Carlo study of spatial resolution of the scintillation camera, Sci. China Technol. Sci. 54 (2011) 2373-2376, https://doi.org/10.1007/s11431-011-4462-5.
- Y. Hirano, T. Zeniya, H. Iida, Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain, Ann. Nucl. Med. 26 (2012) 214-221, https://doi.org/10.1007/s12149-011-0561-4.
- D. Xianling, W.H.M. Saad, W.A.W. Adnan, S. Hashim, N.P.M. Hassan, A.J. Nordin, M.I. Saripan, Simulation of intrinsic resolution of scintillation camera in Monte Carlo environment, in: 2013 IEEE International Conference on Signal and Image Processing Applications, 2013, pp. 11-14, https://doi.org/10.1109/ICSIPA.2013.6707969.
- H. Rothfuss, M. Casey, M. Conti, N. Doshi, L. Eriksson, M. Schmand, Monte Carlo simulation study of LSO crystals, IEEE Trans. Nucl. Sci. 51 (2004) 770-774, https://doi.org/10.1109/TNS.2004.829753.
- D.J. van der Laan, D.R. Schaart, M.C. Maas, F.J. Beekman, P. Bruyndonckx, C.W. E. van Eijk, Optical simulation of monolithic scintillator detectors using GATE/GEANT4, Phys. Med. Biol. 55 (2010) 1659-1675, https://doi.org/10.1088/0031-9155/55/6/009.
- J. Zhu, S. Niu, J. Ma, J. Zhao, L. Huang, Energy deposition of gamma rays in LSO crystal, High Power Laser Part Beams 22 (2010) 1351-1354, https://doi.org/10.3788/HPLPB20102206.1351.
- V.O. de Haan, T.H.J.J. van der Hagen, Optimisation of fast-neutron detection efficiency and spatial resolution for a radiographic imaging system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 515 (2003) 886-891, https://doi.org/10.1016/j.nima.2003.07.053.
- G. Song, K. Wang, J. Ma, M. Zhou, Analysis on coupling between scintillator and lens in radiographic imaging system, High Power Laser Part Beams 24 (2012) 471-475, https://doi.org/10.3788/HPLPB20122402.0475.
- S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. DellAcqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J.G. Cadenas, I. Gonzˊalez, G.G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampˊen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. Oneale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E.D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303, https://doi.org/10.1016/s0168-9002(03)01368-8.
- J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tom'e, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278, https://doi.org/10.1109/TNS.2006.869826.
- M. Asai, A. Dotti, M. Verderi, D.H. Wright, The GEANT4 collaboration, recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.anucene.2014.08.021.
- P. Arce, D. Bolst, M.C. Bordage, J.M.C. Brown, P. Cirrone, M.A. Cortes-Giraldo, D. Cutajar, G. Cuttone, L. Desorgher, P. Dondero, A. Dotti, B. Faddegon, C. Fedon, S. Guatelli, S. Incerti, V. Ivanchenko, D. Konstantinov, I. Kyriakou, G. Latyshev, A. Le, C. Mancini-Terracciano, M. Maire, A. Mantero, M. Novak, C. Omachi, L. Pandola, A. Perales, Y. Perrot, G. Petringa, J.M. Quesada, J. Ramos-Mendez, F. Romano, A.B. Rosenfeld, L.G. Sarmiento, D. Sakata, T. Sasaki, I. Sechopoulos, E. C. Simpson, T. Toshito, D.H. Wright, Report on G4-med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 medical simulation benchmarking group, Med. Phys. 48 (2020) 19-56, https://doi.org/10.1002/mp.14226.
- J. Apostolakis, M. Asai, A.G. Bogdanov, H. Burkhardt, G. Cosmo, S. Elles, G. Folger, V.M. Grichine, P. Gumplinger, A. Heikkinen, I. Hrivnacova, V.N. Ivanchenko, J. Jacquemier, T. Koi, R.P. Kokoulin, M. Kossov, H. Kurashige, I. McLaren, O. Link, M. Maire, W. Pokorski, T. Sasaki, N. Starkov, L. Urban, D.H. Wright, Geometry and physics of the Geant4 toolkit for high and medium energy applications, Radiat. Phys. Chem. 78 (2009) 859-873, https://doi.org/10.1016/j.radphyschem.2009.04.026.
- J.M.C. Brown, M.R. Dimmock, J.E. Gillam, D.M. Paganin, A low energy bound atomic electron Compton scattering model for Geant4, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 338 (2014) 77-88, https://doi.org/10.1016/j.nimb.2014.07.042.
- S. Chauvie, S. Guatelli, V. Ivanchenko, F. Longo, A. Mantero, B. Mascialino, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, M.G. Pia, M. Piergentili, P. P. Rodrigues, S. Saliceti, A. Tnndade, Geant4 low energy electromagnetic physics, IEEE Symposium Conference Record Nuclear Science 1883 (2004) 1881-1885, https://doi.org/10.1109/NSSMIC.2004.1462612, 3 (2004).
- S. Incerti, V. Ivanchenko, M. Novak, Recent progress of Geant4 electromagnetic physics for calorimeter simulation, J. Instrum. 13 (2018) C02054, https://doi.org/10.1088/1748-0221/13/02/C02054.