• 제목/요약/키워드: Particle density

검색결과 1,492건 처리시간 0.029초

Chamotte-Kaolin 납석계 소결체의 특성에 미치는 $ZrO_2$의 첨가효과 (The Effect of Additive Zirconia on Properties in Sintered Body of Chamotte-Kaolin-Agalmatolite System)

  • 박금철;이석로
    • 한국세라믹학회지
    • /
    • 제21권4호
    • /
    • pp.366-372
    • /
    • 1984
  • Unstabilized Zirconia was added to basic composition under 44$mu extrm{m}$ of 57.80wt% Clay-22.20wt% Chamotte-20.00wt% Agalmatolite system. Here the amount and the particle size of Zirconia were 5-25wt% and -20${\mu}{\textrm}{m}$ respectively and the body of these composition was first at 135$0^{\circ}C$. The results obtained from examining the properties of sintered body were as follows. 1. Firing linear shrinkage apparent density and bulk density apparent porosity and water absorption of the samples had the tend to increase according as the particle size of zirconia became larger and the amount of zirconia increased. 2. Modulus of rupture was inversely proportional to the particle size and the additive amount of zirconia, . Especially in case that the particle size of zirconia over 5${\mu}{\textrm}{m}$ and the additive amount of zirconia was 25wt% the modulus of rupture had shrunk drastically. 3. The maximum value of KIC was obtained at 20wt% additive amount of zirconia according to the each particle size of zirconia. Especially the highest value of KIC is 2, 173 M. Pa. M1/2 when the particle size of zirconia is 5~10${\mu}{\textrm}{m}$ and the additive amount is 20wt%.

  • PDF

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

소구경 시추공에서의 밀도검층 수치모델링 연구 (A study on slim-hole density logging based on numerical simulation)

  • 구본진;남명진;황세호
    • 지구물리와물리탐사
    • /
    • 제15권4호
    • /
    • pp.227-234
    • /
    • 2012
  • 물리검층 중에서 매질의 밀도 측정을 통해 공극률을 계산할 수 있는 밀도검층에 대한 수치 연구 결과는 국내에서는 전무하다고 해도 과언이 아니다. 이 연구에서는 MCNP (Monte Carlo N-Particle) 알고리듬에 기초하여 밀도검층을 수치모형화하고 다양한 시추공 환경이 밀도검층 결과에 미치는 영향을 분석함으로써, 밀도검층 자료해석을 위한 기틀을 마련하고자 한다. 이를 위해, MCNP 알고리듬을 이용한 밀도검층 시물레이션의 적용성을 검토하기 위해 단순한 모형에서의 검출기 반응 연구를 수행하였다. 또한 수치 실험을 위해 한국지질자원연구원에서 사용하고 있는 상용 밀도검층기(Robertson Geologging사)에 기초하여 밀도검층기를 수치모델링하였다. 다양한 밀도의 매질에서 시추공 지름을 바꿔가면서 밀도검층 시물레이션을 수행함으로써, Robertson Geologging사의 밀도검층기를 위한 교정곡선을 제시하였다. 이 교정곡선에 기초하여 매질의 밀도를 보다 정확히 분석하고 다양한 시추공환경 변화가 밀도검층에 미치는 영향을 분석하기 위해, 공내수 유무에 따른 밀도검층 반응의 변화 및 시추공 케이싱의 종류에 따른 밀도검층 반응의 변화를 수치모델링을 통해 분석하였다. 이 연구는 밀도검층 시 시추공환경 변화가 검층결과에 미치는 영향을 이해하는 것을 돕고, 향후 국내 시추공환경의 밀도검층에 대한 보다 정확한 해석을 위한 연구의 기초가 될 것으로 기대한다.

역삼투 공정 파울링 지표로서 SDI(Silt Density Index)의 적합성 검증 (Verification of Silt Density Index (SDI) as a fouling index for reverse osmosis (RO) feed water)

  • 김수한;김충환;강석형;이원태;임재림
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.489-495
    • /
    • 2011
  • Silt Density Index (SDI) has been used as a fouling index for reverse osmosis (RO) processes for decades. In order to decrease RO fouling, feed water should meet SDI standard, which was used to select a proper pretreatment system for RO processes. However, SDI is supposed to be sensitive only to particles larger than 0.45 ${\mu}m$ in terms of diameters while nanoparticles and dissolved organic matter can be potent foulants for RO processes. Our study started from the suspected performance of SDI as a RO fouling index. SDI data from pilot plants located world wide including South Korea were collected and analyzed. Suspended partcle concentration (i.e., turbidity and particle counts), and dissolved organic matter concentration (i.e., dissolved orgnaic carbon (DOC) concentration) data were also collected and compared to SDI values of same water samples. We found that SDI values were not only affected by suspended particle concentration but also by dissolved organic matter concentration. Therefore SDI can be used as a reasonable fouling index for RO feed water because the main foulants for RO processes are suspended particle and dissolved organic matter.

Monte Carlo Simulation for Particle Behavior of Recycling Neutrals in a Tokamak Diverter Region

  • Kim, Deok-Kyu;Hong, Sang-Hee;Kihak Im
    • Nuclear Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.459-467
    • /
    • 1997
  • The steady-state behavior of recycling neutral atoms in a tokamak edge region has been analyzed through a two-dimensional Monte Carlo simulation. A particle tracking algorithm used in earlier research on the neutral particle transport is applied to this Monte Carlo simulation in order to perform more accurate calculations with the EDGETRAN code which was previously developed for a two-dimensional edge plasma transport in the authors' laboratory. The physical model of neutral recycling includes charge-exchange and ionization interactions between plasmas and neutral atoms. The reflection processes of incident particles on the device wall are described by empirical formulas. Calculations for density, energy, and velocity distributions of neutral deuterium-tritium atoms have been carried out for a medium-sized tokamak with a double-null configuration based on the KT-2 conceptual design. The input plasma parameters such as plasma density, ion and electron temperatures, and ion fluid velocity are provided from the EDGETRAN calculations. As a result of the present numerical analysis, it is noticed that a significant drop of the neutral atom density appears in the region of high plasma density and that the similar distribution of neutral energy to that of plasma ions is present as frequently reported in other studies. Relations between edge plasma conditions and the neutral recycling behavior are discussed from the numerical results obtained herein.

  • PDF

INDUCTION PLASMA DEPOSITION TECHNOLOGY FOR NUCLEAR FUEL FABRICATION

  • I. H. Jung;K. K. Bae;Lee, J. W.;Kim, T. K.;M. S. Yang
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.216-221
    • /
    • 1998
  • A study on induction plasma deposition with ceramic materials, yttria-stabilized-zirconia ZrO$_2$-Y$_2$O$_3$ (m.p 264O $^{\circ}C$), was conducted with a view developing a new method for nuclear fuel fabrication Before making dense pellets more than 96%TD., the spraying condition was optimized through the process parameters, such as chamber pressure, plasma plate power powder spraying distance, sheath gas composition, probe position, particle size and powders different morphology. The results with a 5mm thick deposit on rectangular planar graphite substrates showed a 97.11% theoretical density when the sheath gas flow rate was Ar/H$_2$120/20 l/min, probe position 8cm, particle size -75 ${\mu}{\textrm}{m}$ and spraying distance 22cm by AMDRY146 powder. The degree of influence of the main effects on density were powder morphology. particle size, sheath gas composition, plate power and spraying distance, in that order. Among the two parameter interactions, the sheath gas composition and chamber pressure affects density greatly. By using the multi-pellets mold wheel type, the pellet density did not exceed 94%T.D., owing to the spraying angle.

  • PDF

등방성 난류에서 입자의 회전에 의한 분산 특성의 변화 (On the modification of particle dispersion in isotropic turbulence by free rotation of particle)

  • 박용남;이창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF

산업단지내 미세먼지 및 토양입자의 개별입자 분석 (Aerosol Characterization Study for Individual Particle of PM10, PM2.5 Observed in Industrial Area)

  • 이동현;김용석;서정민;최금찬
    • 한국환경과학회지
    • /
    • 제22권1호
    • /
    • pp.7-15
    • /
    • 2013
  • Aerosol characterization study for individual particle in Busan metropolitan industrial complex was carried out from December 2010 to August 2011. SEM(scanning electron microscope)-EDX(energy dispersive x-ray) analysis was used for the analysis of 600 single particles during the sampling periods to identify non-metallic aerosol particle sources. Average $PM_{10}$ concentration was 65.5 ${\mu}g/m^3$ in summer, 104.1 ${\mu}g/m^3$ in winter during the sample periods. And Average $PM_{2.5}$ concentration was 24.5 ${\mu}g/m^3$ in summer, 64.5 ${\mu}g/m^3$ in winter individually. Particle density, enrichment factor, correlation analysis, principle component analysis were performed based on chemical composition data. Particle density distribution was measured to 2~4 $g/cm^3$, and the density of $PM_{2.5}$ was measured above 3 $g/cm^3$. In general, the elements Si, Ca, Fe and Al concentrations were higher in all samples of individual particles. The non-ferrous elements Zn, Br, Pb, Cu concentrations were higher in summer than in winter. The concentrations were not changed with the seasons because of non-ferrous industry emission pattern.

전해석출에 의한 단계적 Ni-SiC 복합코팅층 제조공정에 관한연 (A Study on the Graded Ni-SiC Composite Coating by Electrodeposition)

  • 김선규
    • 한국표면공학회지
    • /
    • 제30권5호
    • /
    • pp.347-354
    • /
    • 1997
  • Composite plating is a method of co-depositing fine particles of metallic, non-metallic compound or polymers in the plated layer to improve material properties such as were-resistance, lubrication, or corrosion resistance. Graded Ni-Sic composite coating were produced in this research. Prior to produce Graded Ni-SiC composite coatings, effects of particle size, particle content, pH of electrolyte, temperature, current density, stirring rate on the amount of SiC deposited in the Ni layer were investigated. By manipulating current density and plating time properties of these coating were evaluated by micro-indentation hardness test.

  • PDF