• 제목/요약/키워드: Particle contaminants

검색결과 84건 처리시간 0.025초

고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석 (Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel)

  • 유한조;정연훈;김진길;신형순;임윤정;이상수;손해준;임삼화;김종수
    • 한국환경보건학회지
    • /
    • 제46권6호
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

경기도 북부지역 군용 사격장 토양에 존재하는 화약물질 분포 및 이동 특성 조사 (Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province)

  • 배범한;박지은
    • 한국지반환경공학회 논문집
    • /
    • 제15권6호
    • /
    • pp.17-29
    • /
    • 2014
  • 경기도 ${\bigcirc}{\bigcirc}$지역 군 사격장에서 환경으로 유출되는 화약물질 현장저감시설의 설계 자료 확보를 위해 토양오염조사를 실시하였다. 설계에 필요한 자료는 (i) 주 오염 화약물질 종류 파악, (ii) 배출/이동 경로, (iii) 토양 입경별 화약물질 농도조사 및 침강특성이다. 현장 조사 및 분석결과, TNT와 RDX가 사격장 토양에서의 주 오염물질이지만, 군 훈련 종류와 사격장 지형에 따라 오염도는 변화하였다. 화약물질은 표토이외의 심토와 인근 개울에서도 검출되어, 피탄지에서 하천으로의 유출이 있음을 확인하였다. 피탄지에 화약물질 농도가 높은 hot spot이 다수 존재하였으나, 전반적으로 오염농도가 20 mg/kg을 넘지는 않았다. 피탄지 토양 내 점토 함량은 대조군 12 %에 비해 현저히 낮은 5 % 미만이며, 이는 사격으로 인해 식피가 제거되어 강우 시 토사의 표면유출이 증가하였기 때문이라 판단된다. 토양 입경별 화약물질 분포 분석 결과, 토양 입경 0.075 mm 미만의 세립토에는 화약물질 총량의 약 10 % 이하만이 존재하였다. 침강관 실험결과, 유출수 내 액상으로 유출되는 화약물질량이 고상에 있는 화약물질량보다 많았다. 그러므로 사격장에서 표면 유출되는 강수 내 입자상 물질을 간단한 침전지로 처리하고, 다음으로 정화식물을 식재한 인공습지로 액상 내 화약물질을 처리하는 방안이 자립적이며 지속적으로 유지 가능한 녹색 정화방법이 될 것이다.

중금속으로 오염된 점성토의 동전기영동에 의한 침강 거동에 관한 연구 (Electrophoretic Particle Movement in Suspension Considering the Gravitational Settling and Sedimentation of Clayey Soil)

  • 이명호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권3호
    • /
    • pp.44-52
    • /
    • 2007
  • 다공질매체를 통한 미세 입자의 이동은 고함수비 오염준설토의 탈수 및 오염물질의 제거와 같은 지반의 안정화 처리 및 토양의 정화에 있어서 중요한 메커니즘이 되고 있다. 일반적으로 음전하를 갖는 미세 입자들은 동전기영동의 영향으로 양극(+)방향으로 이동하게 된다. 그러나 중금속과 같은 양전하를 띈 오염물질로 흡착된 미세 입자의 경우 중금속의 종류 및 오염도에 따라 동전기영동에 의한 움직임은 제약을 받을 수 있다. 본 연구에서는 자연상태의 미세토립자의 침강거동 및 직류전류의 영향 하에서 발생되는 동전기영동에 의한 침강 거동에 대하여 조사하였다.

초음파동전기기법을 이용한 비소, 카드뮴, 납으로 오염된 사질토 정화 연구 (Removal of As, Cadmium and Lead in Sandy Soil with Sonification-Electrokinetic Remediation)

  • 오승진;오민아;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권7호
    • /
    • pp.1-11
    • /
    • 2013
  • The actively soil pollution by the toxic heavy-metals like the arsenic, cadmium, lead due to the industrialization and economic activity. The uses the electrokinetic remediation of contaminated soil has many researches against the fine soil having a small size in the on going. However, it is the actual condition which the research result that is not effective due to the low surface charge of the particle and high permeability shows in the electrokinetic remediation in comparison with the fine soil in the case of the sandy soil in which the particle size is large. In this research, the electrokinetic remediation and ultrasonic wave fetch strategy is compound applied against the sandy soil polluted by the arsenic, cadmium, and lead removal efficiency of the sandy soil through the comparison with the existing electrokinetic remediation tries to be evaluated. First of all, desorption of contaminants in soil by ultrasonic extraction in the Pre-Test conducted to see desorption effective 5~15%. After that, By conducted Batch-Test results frequency output century 200 Khz, reaction time 30 min, contaminated soil used in experiment was 500 g. Removal efficiency of arsenic, cadmium, lead are 25.55%, 8.01%, 34.90%. But, As, Cd, Pb remediation efficiency less than 1% in EK1(control group).

습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성 (SOx and NOx removal performance by a wet-pulse discharge complex system)

  • 박현진;이환영;박문례;노학재;유정구;한방우;홍기정
    • 한국입자에어로졸학회지
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

강우에 의한 도로 비점오염원 유출 특성 (Runoff Characteristics of Non-Point Sources on the Stormwater)

  • 김석구;김영임;강성원;윤상린;김소정
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.104-110
    • /
    • 2006
  • 도시화로 인해 증가하고 있는 불투수층은 강우시 지표면 유출수와 함께 유출되는 비점오염물질의 유출량을 증가시킨다. 비점오염원은 인위적인 조절이 어려운 기상, 지형 등의 영향을 받는 특성을 지니고 있어 제어가 어렵다. 따라서 비점오염원에 대한 기초적인 조사는 오염물질 유출 저감에 기여할 수 있을 것으로 판단되어 본 연구에서는 오염물질 유출특성과 유출입자의 입도분포를 조사하였다. 본 연구는 연구단지 내 주차장과 인접한 도로에서 진행되었으며, 오염물질의 평균 농도는 $SS\;26.8{\sim}126.4mg/L,\;COD_{Cr}\;15.3{\sim}117.7mg/L,\;TN\;0.07{\sim}5.16mg/L,\;TP\;0.06{\sim}0.49mg/L$, 중금속류 $0.00{\sim}0.29mg/L$의 범위를 나타냈다. 또한 강우에 따라 차이를 보이나 오염물질의 초기 세척효과가 나타났으며, SS와 오염물질의 유출은 $0.93{\sim}0.99$의 높은 상관관계를 나타냈다. 도로면 유출수의 입도 특성을 살펴본 결과, 기존 자료보다 미세한 것으로 관찰되었다.

침지형 분리막을 이용한 오수고도처리 공정의 막오염 원인물질 및 제어에 관한 연구 (A Study on Membrane Fouling Contaminants and Control in Enhanced Sewage Treatment by Submerged Membrane Bioreactor)

  • 박철휘;윤재곤
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.619-627
    • /
    • 2004
  • Purposes of this study were to examine closely the extracellular polymeric substances (EPS) which was a membrane fouling contaminant, to control detected EPS by powdered activated carbon (PAC) dosage etc. and to evaluate the possibility of practical reuse facility. With high removal efficiency of general pollutants, when the PAC is added to MBR, improvement of removal efficiency of $COD_{cr}$, and color was expected and treated wastewater can be reused. It was judged that the correlation between EPS and membrane fouling was very high. Carbohydrate and DNA in the EPS were judged to be cause of membrane fouling. If EPS could be controled, not only membrane fouling would be decreased but also operation time would be extended. In experiment of powdered activated carbon (PAC), characteristics of the best PAC for membrane fouling control were the particle size of $7{\mu}m$, lodine Number of 1,050, surface area of peat of $1,150m^2/g$. In lab test, operation time of MBR by PAC dosage of 200mg/gVSS was longer than one of MBR by without PAC dosage. Because EPS, especially carbohydrate and DNA, was controled successfully by PAC, membrane fouling in MBR could be decreased.

An Experimental Investigation on the Contamination Sensitivity of an Automotive Fuel Pump

  • Lee Jae-Cheon;Shin Hyun-Myng
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.51-55
    • /
    • 2005
  • This study addresses the contamination sensitivity test of a typical fuel pump for an automotive vehicle. The objective of the study is to find the contamination sensitivity coefficient of a fuel pump on specific contaminant particle sizes so that an optimal fuel filter could be selected. To achieve the objective, the degradation of discharge flow rate of the fuel pump is measured under the experiments of various contaminants size ranges of ISO test dust up to $80\;{\mu}m$. The fundamental theory of contamination sensitivity is introduced and the contamination sensitivity coefficients are estimated using the experimental data. Maximum contamination sensitivity coefficient of $5\chi\;10^{-6}\;L/min{\cdot}Ea$ is found in the contaminant size range of $40\;{\mu}m\~50\;{\mu}m$. The magnified picture of the surface of vane disc reveals that the abrasive wear is the principal cause of discharge flow rate degradation. Hence, this study reveals that a high efficiency filter for contaminant particles especially in the size range of $30\;{\mu}m\~70\;{\mu}m$ especially should be used to maintain the service life of the fuel filter.

터널용 전기집진시스템 개발을 위한 방전극 설계 (Study on Discharge Electrode Design applied for Road Tunnel)

  • 김종률;원종웅;장춘만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1238-1243
    • /
    • 2009
  • As Social Overhead Capital(SOC) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, it is needed to introduce a compulsory ventilation system as well as natural ventilation mechanism. The former, that is, a special compulsory ventilation facility is very useful and helpful to prevent a tunnel of being contaminated by traffic in most case. In the case of obtaining clearer and longer driving view, the ventilation systems have to be considered in order to remove floating contaminants or exhaust gas from engines. In this paper, discharge electrode design technology will be discussed.

  • PDF