• Title/Summary/Keyword: Particle analysis

Search Result 3,470, Processing Time 0.037 seconds

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

A Study on Numerical Perforation Analysis of Axisymmetric Bullet by the Particle Method (입자법을 이용한 축대칭 탄자의 관통거동 수치해석 연구)

  • Kim, Yong-Seok;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.164-171
    • /
    • 2008
  • A modified generalized particle algorithm, MGPA, was suggested to improve the computational efficiency of standard SPH method in numerical analysis of high speed impact behavior. This method uses a numerical failure mechanism than material failure models to describe the target penetration. MGPA algorithm was more effective to describe the impact phenomena and new boundaries produced during the calculation process were well recognized and treated in the target penetration problem of a bullet. When bullet perforation problems were analyzed by this method, MGPA algorithm calculation gives the stable numerical solution and stress oscillation or particle penetration phenomena were not shown. The error range in ballistic velocity limit is less than $2{\sim}13%$ for various target thickness.

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

A Study on the Standard Criteria of Solid Particle Separation Test for Marine Centrifugal Purifier (선박용 정유기 고형분 분리 성능시험 규격기준에 관한 연구)

  • Jeong, Sang-Hu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.1028-1034
    • /
    • 2007
  • In order to establish a criteria of solid particle separation performance test on marine centrifugal purifier at factory acceptance test, an investigation had been done on criteria of test standards, regulations and test specifications of purifier manufactures. KS V 7836, fuel oil and lubricating oil purifiers for marine use-centrifugal type, the criteria of solid particle separation is studied in the point of reality, restricts and analysis method. It is proposed that a reasonable criteria and analysis method should be adopted, and the current criteria shall be revised to adequate levels considering reasonable basis and industrial technology levels. Also, the test analysis conceptions, separation efficiency method and particle size restriction method, are reviewed to fulfil separation performance test for marine centrifugal purifiers.

Morphological. Analysis of Wear Particles by Fractal Dimension (차원해석에 의한 기계습동재료의 마멸분 형상특징 분석)

  • Won, D. W.;Jun, S. J.;Cho, Y. S.;Kim, D. H.;Park, H. S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.53-58
    • /
    • 2001
  • Fractal dimension is the method to measure the roughness and the irregularity of something that cannot be defined obviously by Euclidean dimension. And the analysis method of this dimension don't need perfect, accurate boundary and color like analysis lot diameter, perimeter, aspect or reflectivity of wear particles or surface. If we arranged the morphological characteristic of various wear particle by using the characteristic of fractal dimension, it might be very efficient to the diagnosis of driving condition. In order to describe morphology of various wear particle, the wear test was carried out under friction experimental conditions. And fractal descriptors was applied to boundary and surface of wear particle with image processing system. These descriptors to analyze shape and surface wear particle are boundary fractal dimension and surface fractal dimension.

  • PDF

Chemical Composition of Fine Aerosol Associated with Visibility Degradation in Seoul Metropolitan Area in 1994 (1994년 수도권 지역에서의 시정과 미세 입자상물질 화학조성과의 관계해석)

  • 한진석;김병곤;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 1996
  • This study was carried out to monitor the visibility including measurement and analysis of the various parameters such as particle size distribution, chemical composition, and meteorotical conditions to understand the characteristics and causes of this phenomenon. According to the analysis of intensive sampling, $SO_4^{2-}, NO-3^-, Cl^-, NH_4^+$ ion concentration increased together with the mass concentration around 1 $\mu$m in the case of low visibility. $(NH_4)_2SO_4, NH_4NO_3$, and $NH_4Cl$ were thought to be the major components of fine particles. The statistical analysis showed that the scattering effect of particle was 81.2%, the absorption effect was 14.9%. Therefore, these effects were the major factors to reduce the visibility. In conclusion, the visibility was reduced by the fine particle of sulfate (18.6%), nitrate (14.2%), organic carbon (10.8%), element carbon (25.8%), and residual (24.8%) during this study.

  • PDF

Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor (TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF

Development of Program for Relative Biological Effectiveness (RBE) Analysis of Particle Beam Therapy

  • Chung, Yoonsun;Ahn, Sang Hee;Choi, Changhoon;Park, Sohee
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Relative biological effectiveness (RBE) of particle beam needs to be evaluated at particle beam therapy centers before the clinical application of the particle beam. However, since RBE analysis is implemented manually, it is useful to have a tool that can easily and effectively handle the data of experiments to generate cell survival curve and to analyze RBE simultaneously. In this work, the development of a program for RBE analysis of particle beam therapy was presented. This RBE analysis program was developed to include two parts; fitting the cell survival curves to linear-quadratic model and calculating the RBE values at a certain endpoint using fitting results. This program was also developed to simultaneously compare and analyze the template results that stored experiment data with photon and particle beam irradiations. The results of the cell survival curve obtained by each irradiation can be analyzed by the user on a desired data after reading the template stored in the easy-to-use excel file. The analysis results include the cell survival curves with error range, which are appeared in the screen and the ${\alpha}$ and ${\beta}$ parameters of linear-quadratic model with 95% confidence intervals, RBE values, and $R^2$ values to evaluate goodness-of-fit of survival curves to model, which are stored in a text cvs file. This software can generate cell survival curve, fit to model, and calculate RBE all at once with raw experiment data, so it helps users to save time for data handling and to reduce the possibility of making error on analysis. As a coming plan, we will create a user-friendly graphical user interface to present the results more intuitively.

Analysis of Measuring Error for Particle Size Analysis by Laser Diffraction Spectrometer (입자크기분석을 위한 레이저회절 분광계의 측정오차 분석)

  • Ha, Sang-An;Son, Heui-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.713-722
    • /
    • 2000
  • This study analysed error of measurement and reproducibility for particle size analysis by the laser diffraction spectrometer. Laser diffraction spectrometers has become a very important method of particle size analysis. This measuring method has the advantage of simple operation, good reproducibility and rapid analysis. A feeding and dispersing system have been developed, which allows mass throughputs between 0.1~23 g/min in flowing air and 1.4~35% in flowing liquid. It has been used as a feeder unit for wet and dry particle size analysis from diffraction patterns. Relevant parameters, such as particle shape, particle size, dispersion, flow rate, concentration were analysed for measuring error. And system parameters of instruments for measurement of dynamic processes, eg, measuring time, focal plane, injection pressure drop and dispersion effect by the ultrasonic and mixing of preliminary treatment, were also discussed.

  • PDF

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF