• Title/Summary/Keyword: Particle Transition

Search Result 281, Processing Time 0.025 seconds

Force Chain Stability Analysis in Jamming Mechanism for Variable Stiffness Actuator (가변 강성 엑츄에이터인 재밍 메커니즘의 힘 체인 안정성 분석)

  • Lee, Jeongsu;Cho, Youngjun;Koo, Jachoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2019
  • In the case of conventional soft robots, the basic stiffness is small due to the use of flexible materials. Therefore, there is a limitation that the load that can bear is limited. In order to overcome these limitations, a study on a variable stiffness method has been conducted. And it can be seen that the jamming mechanism is most effective in increasing the stiffness of the soft robot. However, the jamming mechanism as a method in which a large number of variable act together is not even theoretically analyzed, and there is no study on intrinsic principle. In this paper, a study was carried out to increase the stability of the force chain to increase the stiffness due to the jamming transition phenomenon. Particle size variables, backbone mechanisms were used to analyze the stability of the force chains. We choose a jamming mechanism as a variable stiffness method of a soft robot, and improve the effect of stiffness based on theoretical analysis, modeling FEM simulation, prototyping and experiment.

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

Test-particle Solutions for Electron Acceleration in Low Mach Number Shocks

  • Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2020
  • We propose semi-analytic models for the electron momentum distribution in weak shocks that accounts for both in situ acceleration and reacceleration through diffusive shock acceleration (DSA). In the former case, a small fraction of incoming electrons is assumed to be reflected at the shock ramp and pre-accelerated to the so-called injection momentum, pinj, above which particles can diffuse across the shock transition and participate in the DSA process. This leads to the DSA power-law distribution extending from the smallest momentum of reflected electrons, pref, all the way to the cutoff momentum, peq, constrained by radiative cooling. In the latter case, fossil electrons, specified by a power-law spectrum with a cutoff, are assumed to be re-accelerated from pref up to peq via DSA. We show that, in the in situ acceleration model, the amplitude of radio synchrotron emission depends strongly on the shock Mach number, whereas it varies rather weakly in the re-acceleration model.

  • PDF

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.721-733
    • /
    • 2019
  • Objective: The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. Methods: Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. Results: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature ($T_o$), thermal transition temperature ($T_d$), storage modulus (G') and loss modulus (G"). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from $40^{\circ}C$ to $60^{\circ}C$. Further heating to $80^{\circ}C$ had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). Conclusion: These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.

An Analysis of Science Textbooks and Internet Sites Related to Diffusion and Dissolution on the View Point of Particle Theory, and Development of Computer-Assisted Instruction Program (입자론의 관점에서 본 확산과 용해 개념에 관련된 과학 교과서 및 인터넷 자료 분석과 컴퓨터 수업 보조자료의 개발)

  • Kim, Ju Hyun;Lee, Dong Jun;Kim, Sun Kyoung;Kang, Seong Joo;Paik, Seong Hey
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.611-624
    • /
    • 2000
  • In this study we analysed 3-12 grade science textbooks, many literatures and internet sites related to diffusion and dissolution concepts. From these data, we discovered that the explanations of diffusion that used in textbooks are not considered the site of collision with mediums, and confused with dissolution, state transition and effusion. In the case of dissolution, almost analysis data were short of the explanations of interaction effect. Most of all, the focus of dissolution explanations was to solve the calculation problems rather than to understand the concept. Every internet site was poor, just as the level of showing textbook contents with computer, so the only effect of using computer was the sense of sight and hearing. Chemistry must be understood nature phenomena with a view point of particle theory, but many textbooks and Internet sites didn't represent it sufficiently. We set up the correct scientific concept and linked micro world of particle theory with macro world of nature phenomena. With a use of computer which have the advantage of representing moving things, we developed the computer-assisted instruction programs related to diffusion and dissolution with the viewpoint of particle movement.

  • PDF

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Hydrothermal Synthesis of Vanadium (IV) Dioxide and its Thermochromic Property (바나듐(IV) 이산화물의 수열합성 및 이의 열변색 특성)

  • Lee, Hun Dong;Son, Dae Hee;Lee, Won Ki;Jin, Young Eup;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • In this study, vanadium dioxide ($VO_2$) powder well known as a thermochromic material was prepared from $V_2O_5$ powder and oxalic acid dihydrate by hydrothermal and calcination process at various conditions. The chemical bonding and crystal structures in addition to thermal property of samples were determined using FE-SEM, XRD, XPS, and DSC. Also, spectroscopic and thermochromic properties of film samples were analyzed by UV-Vis-NIR spectroscopy after the thin film was prepared from the sol dispersed with the size of below 50 nm by the ball-milling of powder sample. With increasing the calcination temperature, the phase transition temperature of samples increased from $40^{\circ}C$ to $70^{\circ}C$ due to the increase of particle size.

Preparation of Ferroelectric Barium Titanate Fine Particles by Hydrothermal Method and Their Dielectric Properties -Variation of Dielectric Properties and Phase Transition by Heat Treatment- (강유전성 티탄산바륨 극미립자의 수열합성과 그 유전특성 - 열처리에 의한 상전이 및 유전 특성 변화 -)

  • Um, Myeong-Heon;Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.817-821
    • /
    • 1998
  • $BaTiO_3$ particles were prepared using $Ba(OH)_2{\cdot}8H_2O$ and $Ti(OC_2H_5)O_4$ by the hydrothermal method and their characteristics treated at the various temperatures have been investigated. This prepared $BaTiO_3$ powder includes a very small amount of $H_2O$ and $OH^-$. By increasing the treated temperature from $200^{\circ}C$ to $1000^{\circ}C$, the mean particle size was accordingly increased from $0.022{\mu}m$ to $0.072{\mu}m$ and the tetrogonality(c/a)was increased from 1.02 to 1.2 so that the phase transition to tetroganal takes place. $BaTiO_3$ sintered at $1250^{\circ}C$ after heat treatment at $400^{\circ}C$ for 3 hrs showed a specific dielectric constant of 8120 and surface activation energy was 9680 kcal/mol.

  • PDF

Study of Emulsion Polymerization Condition of Aqueous Adhesive (유화중합을 이용한 수분산성접착제의 중합조건에 관한 연구)

  • Lee, HaengJa;Park, JiSun;Lee, SangRok;Kim, JongMin;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.470-475
    • /
    • 2009
  • To study the optimal synthesis conditions of aqueous acrylic adhesive using emulsion polymerization, the effects of monomer, surfactant and initiator on the adhesive properties, such as conversion rate, particle size, peel strength, and glass transition temperature, were investigated. 2-EHA, n-BA and MMA were used as main monomers, 2-HEMA and AAc as functional monomers, SLS as surfactant and APS as initiator, respectively. The conversion rate was over 95% at 3.75% surfactant(SLS/monomer), 0.612% initiator(APS/monomer) and $82^{\circ}C$ reaction temperature. When the excess amount of surfactant or initiator was used, the peel strength represented decreasing tendency. The maximum conversion rate and peel strength were obtained at 65% 2-EHA/monomer, 20% BA/monomer, and 10% MMA/monomer.