• Title/Summary/Keyword: Particle Sloshing

Search Result 27, Processing Time 0.022 seconds

Energy dissipation by particle sloshing in a rolling cylindrical vessel (분체슬로싱 현상에 의한 원통형 용기에서의 에너지 소실)

  • Lee, Soo-Hyuk;Heo, Sung-Mo;Cho, Hye-Min;Son, Hyunsung;Jeong, Seong-Min;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.62-68
    • /
    • 2010
  • In the engineering field, sloshing in rolling vessel is a hot issue because of the connection with ship stability problem. The sloshing phenomena also can be utilized in the field of structure or facility vibration damper. This paper explores the possibility which sloshing of multi-particles can be used to dissipate energy in a rolling container. This energy dissipation can be utilized to the application of rotating damper. Some of the parameters expected to dissipates energy, such as vessel size, particle size, mass fraction and ramp height, have been experimentally and theoretically studied.

Particle-based Simulation for Sloshing in a Rectangular Tank (사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션)

  • Hwang, Sung-Chul;Lee, Byung-Hyuk;Park, Jong-Chun;Sung, Hong-Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.

Knowledge from recent investigations on sloshing motion in a liquid pool with solid particles for severe accident analyses of sodium-cooled fast reactor

  • Xu, Ruicong;Cheng, Songbai;Li, Shuo;Cheng, Hui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.589-600
    • /
    • 2022
  • Investigations on the molten-pool sloshing behavior are of essential value for improving nuclear safety evaluation of Core Disruptive Accidents (CDA) that would be possibly encountered for Sodium-cooled Fast Reactors (SFR). This paper is aimed at synthesizing the knowledge from our recent studies on molten-pool sloshing behavior with solid particles conducted at the Sun Yat-sen University. To better visualize and clarify the mechanism and characteristics of sloshing induced by local Fuel-Coolant Interaction (FCI), experiments were performed with various parameters by injecting nitrogen gas into a 2-dimensional liquid pool with accumulated solid particles. It was confirmed that under different particle-bed conditions, three representative flow regimes (i.e. the bubble-impulsion dominant, transitional and bed-inertia dominant regimes) are identifiable. Aimed at predicting the regime transitions during sloshing process, a predictive empirical model along with a regime map was proposed on the basis of experiments using single-sized spherical solid particles, and then was extended for covering more complex particle conditions (e.g. non-spherical, mixed-sized and mixed-density spherical particle conditions). To obtain more comprehensive understandings and verify the applicability and reliability of the predictive model under more realistic conditions (e.g. large-scale 3-dimensional condition), further experimental and modeling studies are also being prepared under other more complicated actual conditions.

Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters (플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향)

  • Nam, Jung-Woo;Kim, Kyung-Sung;Hwang, Sung-Chul;Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

Simulation of Membrane Sloshing Tank by Using MPS (입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션)

  • Kim, Kyung Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.117-122
    • /
    • 2019
  • In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

Investigation of flow-regime characteristics in a sloshing pool with mixed-size solid particles

  • Cheng, Songbai;Jin, Wenhui;Qin, Yitong;Zeng, Xiangchu;Wen, Junlang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.925-936
    • /
    • 2020
  • To ascertain the characteristics of pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors, in our earlier work several series of experiments were conducted under various scenarios including the condition with mono-sized solid particles. It is found that under the particle-bed condition, three typical flow regimes (namely the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime) could be identified and a flow-regime model (base model) has been even successfully established to estimate the regime transition. In this study, aimed to further understand this behavior at more realistic particle-bed conditions, a series of simulated experiments is newly carried out using mixed-size particles. Through analyses, it is verified that for present scenario, by applying the area mean diameter, our previously-developed base model can provide the most appropriate predictive results among the various effective diameters. To predict the regime transition with a form of extension scheme, a correction factor which is based on the volume-mean diameter and the degree of convergence in particle-size distribution is suggested and validated. The conducted analyses in this work also indicate that under certain conditions, the potential separation between different particle components might exist during the sloshing process.

An experimental study on pool sloshing behavior with solid particles

  • Cheng, Songbai;Li, Shuo;Li, Kejia;Zhang, Ting
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • It is important to clarify the mechanisms of molten-fuel-pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors. In this study, motivated by acquiring some evidence for understanding the characteristics of this behavior at more realistic conditions, a number of experiments are newly performed by injecting nitrogen gas into a water pool with the accumulation of solid particles. To achieve comprehensive understanding, various parameters including particle bed height, particle size, density, shape, gas pressure along with the gas-injection duration, were employed. It is found that due to the different interaction mechanisms between solid particles and the gas bubble injected, three kinds of regimes, termed respectively as the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime, could be identified. The performed analyses also suggest that under present conditions, all our experimental parameters employed can have noticeable impact on the regime transition and resultant sloshing intensity (e.g. maximum elevation of water level at pool peripheries). Knowledge and fundamental data from this work will be used for the future verifications of fast reactor severe accident codes in China.

Direct imposition of the wall boundary condition for simulating free surface flows in SPH

  • Park, Hyung-Jun;Seo, Hyun-Duk;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.497-518
    • /
    • 2021
  • In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is directly imposed by adding boundary truncation terms to the mass and momentum conservation equations. Thus, boundary particles are not used in boundary modeling. Doing so, the wall boundary condition is accurately imposed, boundary modeling is simplified, and computation is made efficient without losing stability in SPH. Performance of the proposed method is demonstrated through several numerical examples: dam break, dam break with a wedge, sloshing, inclined bed, cross-lever rotation, pulsating tank and sloshing with a flexible baffle. These results are compared with available experimental results, analytical solutions, and results obtained using the boundary particle method.