• Title/Summary/Keyword: Particle Size Measurement

Search Result 444, Processing Time 0.021 seconds

Characterization and Evaluation of Freeze-dried Liposomes Loaded with Ascorbyl Palmitate Enabling Anti-aging Therapy of the Skin

  • Lee, Sang-Kil;Lee, Jae-Hwi;Choi, Young-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.99-102
    • /
    • 2007
  • To prepare freeze-dried ascorbyl palmitate (AsP)-containing liposome which can protect the drug from moisture attack and be used instantly by mixing with water for anti-aging and skin whitening therapy, AsP was encapsulated into liposomes and freeze-dried with trehalose. The freeze-dried liposome formulations were characterized by measuring water contents, particle size, time required for complete reconstitution. With the freeze-dried liposomes, we performed the stability test under accelerated conditions, skin permeation and localization test. The measurement of the time to perfect reconstitution showed that the freeze-dried liposomes can be changed to their initial state rapidly and short term stability test of AsP in reconstituted liposomes under accelerated conditions confirmed that the stability of AsP was considerably enhanced as compared to freshly prepared liposomes. The skin permeation and localization properties of AsP in reconstituted liposomes were not significantly different, indicating that the liposomal structures were maintained before and after freezedrying. In conclusion, the freeze-drying method provided a possible way to overcome the instability issue of AsP induced by the moisture and reproduced similar skin permeation and localization properties as shown by freshly prepared liposomes.

Sonochemical Synthesis, Thermal Studies and X-ray Structure of Precursor [Zr(acac)3(H2O)2]Cl for Deposition of Thin Film of ZrO2 by Ultrasonic Aerosol Assisted Chemical Vapour Deposition

  • Hussain, Muzammil;Mazhar, Muhammad;Rauf, Muhammad Khawar;Ebihara, Masahiro;Hussain, Tajammal
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.92-96
    • /
    • 2009
  • A new precursor [$Zr(acac)_{3}(H_{2}O)_{2}$] was synthesized by Sonochemical technique and used to deposit thin $ZrO_{2}$ film on quartz and ceramic substrate via ultrasonic aerosol assisted chemical vapour deposition (UAACVD) at 300 ${^{\circ}C}$ in oxygen environment followed by annealing of the sample for 2-3 minutes at 500 ${^{\circ}C}$ in nitrogen ambient. The molecular structure of the precursor determined by single crystal X-ray analysis revealed that the molecules are linked through intermolecular hydrogen bonds forming pseudo six and eight membered rings. DSC and TGA/FTIR techniques were used to determine thermal behavior and decomposition temperature of the precursor and nature of evolved gas products. The optical measurement of annealed $ZrO_{2}$ film with tetragonal phase shows optical energy band gap of 5.01 eV. The particle size, morphology, surface structure and composition of deposited films were investigated by XRD, SEM and EDX.

Measurement Theory Development of Suspended Solid Concentration Using Glass Fiber Membrane Module (유리섬유 분리막 모듈을 이용한 부유물질 농도의 측정 원리 개발)

  • Park, Jin-Yong;Jung, Wan
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.268-276
    • /
    • 2009
  • In this study the basic data were settled down to establish theory of membrane module and apparatus for measuring suspended solid per particle size. The theory and technique were different with the conventional weight method and light scattering method. For this purpose silica, dextran, kaolin, and PEG (polyethylene glycol) suspended solutions were filtrated through glass fiber membranes GF/C and GF/A on membrane module for measuring TMP (Trans-membrane pressure) changes using digital pressure gages. And the related equation between modified solution concentration and TMP change slope was derived from the TMP change experiments, and then suspended solid concentration of samples could be expected by the equation.

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

Structural, Electrical and Optical Properties of ZnO Thin Films Grown at Various Plume-Substrate Angles by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.97-101
    • /
    • 2005
  • ZnO thin films were grown at different plume-substrate (P-S) angles of 90$^{\circ}$ (on-axis PLD), 45$^{\circ}$ and 0$^{\circ}$ (off-axis PLD) using pulsed laser deposition. The x-ray diffraction pattern exhibiting a dominant (002) and a minor (101) peak of ZnO indicates all films were strongly c-axis oriented. By observing of (002) peak, the FWHMs of ZnO (002) peaks decreased and c-axis lattice constant approached the value of bulk ZnO as P-S angle decreased. Whereas the carrier concentration of ZnO thin film deposited at P-S angle of 90$^{\circ}$ was ~ 10$^{19}$ /cm$^{3}$, the Hall measurement of ZnO thin films deposited at P-S angles of 0$^{\circ}$ and 45$^{\circ}$ was impossible due to the decrease of the carrier concentration by the improvement of stoichiometry and crystalline quality. By decreasing P-S angle, the grain size of the films and the UV intensity investigated by photoluminescence (PL) increased and UV peak position showed red shift. The improvement of properties in ZnO thin films deposited by off-axis technique was due to the decrease of repulsive force between a substrate and the particle in plume and the relaxation of supersaturation.

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Synthesis of Sodium ${\alpha}$-Sulfo Fatty Acid Allyl Ester Oligomer and Didpersion Stability of Pigments in Aqueous Solution ((${\alpha}$-술폰 지방산 알릴에스테르 올리고머의 합성 및 안료 분산성)

  • Lee, Hyang-Woo;Kwon, Soon-Il;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2001
  • Allylaliphatic carboxylate oligomers were prepared from polymerization giving allyl aliphatic carboxylates in the presence of potassium persulfate in methanol and the ${\alpha}-sulfonation$ of these allyl aliphatic carboxylates oligomers were carried by direct addition of dry sulfur trioxide. The dispersing performance of oligomer type anionic surfactants and SDS in the aqueous suspension of $Fe_{2}O_{3}$ and $Tio_{2}$ particles were evaluated by particle size distribution and ${\zeta}-potential$ measurement. As results, the particles of $Fe_{2}O_{3}$ and $Tio_{2}$ were flocculated by addition of small amount of oligomer type anionic surfactants and SDS, then the flocks redispersed by more addition oligomer type anionic surfactants and SDS. The dispersion and flocculation were observed in lower concentration range of oligomer type anionic surfactants than SDS.

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Synthesis and Oxygen Reduction Reaction Evaluation of 20% Pt/C for Polymer Electrolyte Fuel Cell (고분자전해질 연료전지용 20% Pt/C 캐소드 촉매 제조 및 산소환원반응 평가)

  • Kim, Jinhwan;Kang, Suk-Min;Thube, Dilip. R.;Ryu, Hojin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.454-459
    • /
    • 2009
  • In order to commercialize Polymer Electrolyte Fuel Cell (PEFC), the cathode catalyst such as Platinum supported Carbon (Pt/C) need to have a high activity of Oxygen Reduction Reaction (ORR). In this study, the 20% Pt/C was synthesized using the chemical reduction method while the crystallinity of Platinum (Pt) particles were controlled under heat treatment conditions. The activity of synthesized Pt catalysts was evaluated using electrochemical measurement. Compared with the $i_{ORR}$ at 0.8 V of 20% Pt/C heat-treated at $500^{\circ}C$ and the 20% Pt/C that were not heated and commercial 20% Pt/C, the $i_{ORR}$ at 0.8 V of 20% Pt/C heattreated at $500^{\circ}C$ was 9.5 and 1.7 times higher than those of the 20% Pt/C and commercial 20% Pt/C that were not heated. It was considered that the crystallinity and particle size affect the ORR activity of the Pt/C catalysts.