DOI QR코드

DOI QR Code

Sonochemical Synthesis, Thermal Studies and X-ray Structure of Precursor [Zr(acac)3(H2O)2]Cl for Deposition of Thin Film of ZrO2 by Ultrasonic Aerosol Assisted Chemical Vapour Deposition

  • Hussain, Muzammil (Department of Chemistry/National Centre of Physics, Quaid-i-Azam University) ;
  • Mazhar, Muhammad (Department of Chemistry/National Centre of Physics, Quaid-i-Azam University) ;
  • Rauf, Muhammad Khawar (Department of Chemistry, Faculty of Engineering, Gifu University) ;
  • Ebihara, Masahiro (Department of Chemistry, Faculty of Engineering, Gifu University) ;
  • Hussain, Tajammal (National Centre of Physics, Quaid-i-Azam University)
  • Published : 2009.01.20

Abstract

A new precursor [$Zr(acac)_{3}(H_{2}O)_{2}$] was synthesized by Sonochemical technique and used to deposit thin $ZrO_{2}$ film on quartz and ceramic substrate via ultrasonic aerosol assisted chemical vapour deposition (UAACVD) at 300 ${^{\circ}C}$ in oxygen environment followed by annealing of the sample for 2-3 minutes at 500 ${^{\circ}C}$ in nitrogen ambient. The molecular structure of the precursor determined by single crystal X-ray analysis revealed that the molecules are linked through intermolecular hydrogen bonds forming pseudo six and eight membered rings. DSC and TGA/FTIR techniques were used to determine thermal behavior and decomposition temperature of the precursor and nature of evolved gas products. The optical measurement of annealed $ZrO_{2}$ film with tetragonal phase shows optical energy band gap of 5.01 eV. The particle size, morphology, surface structure and composition of deposited films were investigated by XRD, SEM and EDX.

Keywords

References

  1. Kang, L.; Lee, B. H.; Qi, W. IEEE Electron Device Lett. 2000, 76, 112
  2. Guha, S.; Cartier, E.; Gribelyuk, M. A.; Borjarczuk, N. A.; Coppel, M. A. Appl. Phys. Lett. 2000, 77, 2710 https://doi.org/10.1063/1.1320464
  3. Wilk, G. D.; Wallace, R. M. Appl. Phys. Lett. 2000, 76, 112 https://doi.org/10.1063/1.125673
  4. Wilk, G. D.; Wallace, R. M. Appl. Phys. Lett. 1999, 74, 2854 https://doi.org/10.1063/1.124036
  5. Kim, W.; Kang, S.; Rhee, S.; Lee, N.; Lee, J.; Kang, H. J. Vac. Sci. echnol. A 2002, 20, 2096
  6. Qi, W.; Nieh, R.; Lee, B. H.; Kang, L.; Jeon, Y.; Onishi, K.; Ngai, T.; Banerjee, S.; Lee, J. C. IEDM 1999, 145
  7. Bradley, D. C.; Thornton, P. Comprehensive Inorganic Chemistry; Trotman-Dichenson, A. F., Ed.; Pergamon Press: Oxford, 1973; Vol 3. p 426
  8. Apparao, K. V. S. R.; Sahoo, N. K.; Bagchi, T. C. Thin Solid Films 1985, L71, 129
  9. Kim, D.-Y.; Lee, l.-H.; Park, S. J. J. Mater. Res. 1996, 11(10), 2583 https://doi.org/10.1557/JMR.1996.0324
  10. Brenier, R.; Mugnier, J.; Mirica, E. Appl. Surf. Sci. 1999, 85, 143 https://doi.org/10.1016/0169-4332(94)00323-8
  11. Morita, M.; Fukumoto, H.; Imura, T.; Osaka, Y. J. Appl. Phys. 1985, 56, 2407
  12. Tauber, R. N.; Dumbri, A. C.; Caffrey, R. E. J. Electrochem. Soc. Solid State Sci. 1971, 118, 747
  13. Balog, M.; Schieber, M.; Michman, M.; Patai, S. Thin Solid Films 1977, 47, 109 https://doi.org/10.1016/0040-6090(77)90350-9
  14. Ritala, M.; Leskela, M. Appl. Surf. Sci. 1994, 75, 333 https://doi.org/10.1016/0169-4332(94)90180-5
  15. Kukli, K.; Thanaus, J.; Ritala, M.; Leskala, M. J. Electrochem. Sci. 1997, 144, 300 https://doi.org/10.1149/1.1837399
  16. Kukli, K.; Ritala, M.; Aarik, J.; Ustare, T.; Leskala, M. J. Appl. Phys. 2002, 92, 1833 https://doi.org/10.1063/1.1493657
  17. Cassir, M.; Goubin, F.; Bernay, C.; Vernoux, P.; Lincot, D. Appl. Surf. Sci. 2002, 193, 120 https://doi.org/10.1016/S0169-4332(02)00247-7
  18. Kukli, K.; Forsgren, K.; Aarik, J.; Ustare, T.; Aidla, A.; Niska, A.; Ritala, M.; Leskal, M.; Harsta, A. J. Cryst. Growth 2001, 211, 300
  19. Kukli, K.; Ritala, M.; Ustare, T.; Aarik, J.; Forsgren, K.; Sajavaara, T.; Leskala, M.; Harsta, A. Thin Solid Films 2002, 53, 410
  20. Kukli, K.; Ritala, M.; Leskala, M. Chem. Vap. Deposition 2000, 6, 297 https://doi.org/10.1002/1521-3862(200011)6:6<297::AID-CVDE297>3.0.CO;2-8
  21. Putknen, M.; Niinisto, L. J. Mater. Chem. 2001, 11, 3141 https://doi.org/10.1039/b105272c
  22. Matero, R.; Ritala, M.; Leskela, M.; Jones, A. C.; William, P. A.; Bickley, J. F.; Steiner., A.; Leedham, T. J.; Davies, H. O. J . Non-Cryst. Solids 2002, 24, 303
  23. Gao, Y.; Masuda, Y.; Yonezawa, T.; Ohta, K.; Koumoto, K. Chem. Mater. 2004, 16, 2615 https://doi.org/10.1021/cm049771i
  24. Gao, Y.; Masuda, Y.; Yonezawa, T.; Koumoto, K. J. Ceram. Soc. Jpn. 2002, 110, 379 https://doi.org/10.2109/jcersj.110.379
  25. Hugh, O. P. Handbook of Chemical Vapour Deposition (CVD); Noyes Publications: New Jersey, U.S.A. 1999; p 91
  26. Balog, M.; Schieber, M.; Patai, S.; Michman, M. Thin Solid Films 1972, 17, 298
  27. Balog, M.; Schieber, M.; Michman, M.; Patai, S. J. Cryst. Growth 1972, 47, 109 https://doi.org/10.1016/0022-0248(79)90164-7
  28. Putknen, M.; Niinisto, L. J. Mater. Chem. 2001, 11, 3141 https://doi.org/10.1039/b105272c
  29. Matero, R.; Ritala, M.; Leskala, M.; Jones, A. C.; Williams, P. A.; Bickley, J. F.; Steiner, A.; Leedhan, T. J.; Davies, H. O. J. Non-Cryst. Solids. 2002, 24, 303
  30. Nam, W.-H.; Rhee, S.-W. Chem. Vap. Deposition 2004, 10 (4), 201 https://doi.org/10.1002/cvde.200306277
  31. Han, B. H.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030 https://doi.org/10.1021/jo00146a044
  32. Lee, P. H.; Bang, K.; Lee, K.; Sung, S. Y.; Chang, S. Syn. Commun. 2001, 31, 3781 https://doi.org/10.1081/SCC-100108228
  33. Mazahar, M.; Hussain, S. M.; Faiz, R.; Gabricle, K.-K.; Kieran, C. M. Bull. Korean Chem. Soc. 2006, 27(10), 1573
  34. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115 https://doi.org/10.1107/S0021889898007717
  35. Sheldrick, G. M. SHELXL 9; University of Gottingen, Germany, 1997
  36. Clegg, W. Acta Cryst. 1987, C43, 790
  37. Hoene, J. Von.; Charles, R. G.; Hickam, W. M. J. Phys. Chem. 1958, 62, 1098 https://doi.org/10.1021/j150567a019
  38. Phale, P. R. J. Mater. Res. 1993, 8, 334 https://doi.org/10.1557/JMR.1993.0334
  39. Otsu, Y.; Egami, M.; Misawa, T.; Fujita, H.; Yukimura, K. Paper of Technical Meeting on Electrical Discharge, IEE Japan 2003, ED03(107-115), 37-41
  40. Gao, X. D.; Li, X. M.; Yu, W. D. J. Inorg. Mater. 2004, 19, 610
  41. Grieve, R. C. J. Phys. Chem. 1978, 82, 218 https://doi.org/10.1021/j100491a016
  42. Na, J. S.; Kim, D.-H. et al. Jr. of Electrochemical Soc. 2002, 149(1), C23-27 https://doi.org/10.1149/1.1421605
  43. Benny, J.; Manoj. P. K.; Vaidyan V. K. Bull. Mater. Sci. 2005, 28(5), 487 https://doi.org/10.1007/BF02711242
  44. Tauber, R. N.; Dumbri, A. C. Caffrey, R. E. J. Electrochem. Soc. Solid State Sci. 1971, 118, 747